The Hartogs extension phenomenon in almost homogeneous algebraic varieties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the Hartogs extension phenomenon in noncompact almost homogeneous algebraic varieties, and we prove a cohomological and a weight criterion for the Hartogs phenomenon. In the case of spherical varieties we prove a criterion for the Hartogs phenomenon in terms of coloured fans.Bibliography: 28 titles.

About the authors

Sergei Viktorovich Feklistov

Siberian Federal University

Email: sergeyfe2017@yandex.ru
without scientific degree, no status

References

  1. D. N. Akhiezer, Lie group actions in complex analysis, Aspects Math., E27, Friedr. Vieweg & Sohn, Braunschweig, 1995, viii+201 pp.
  2. M. Andersson, H. Samuelsson, Koppelman formulas and the $bar{partial}$-equation on an analytic space, Institut Mittag-Leffler preprint series, 2008, 31 pp.
  3. A. Andreotti, H. Grauert, “Theorèmes de finitude pour la cohomologie des espaces complexes”, Bull. Soc. Math. France, 90 (1962), 193–259
  4. A. Andreotti, C. D. Hill, “E. E. Levi convexity and the Hans Lewy problem. I. Reduction to vanishing theorems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 26:2 (1972), 325–363
  5. A. Andreotti, E. Vesentini, “Carleman estimates for the Laplace–Beltrami equation on complex manifolds”, Inst. Hautes Etudes Sci. Publ. Math, 25 (1965), 81–130
  6. C. Bănică, O. Stănăşilă, Algebraic methods in the global theory of complex spaces, Editura Academiei, Bucuresti; John Wiley & Sons, Ltd., London–New York–Sydney, 1976, 296 pp.
  7. Г. Э. Бредон, Теория пучков, Наука, М., 1988, 312 с.
  8. M. Brion, “Une extension du theorème de Borel–Weil”, Math. Ann., 286:4 (1990), 655–660
  9. M. Brion, “Introduction to actions of algebraic groups”, Les cours du CIRM, 1:1 (2010), 1–22
  10. M. Colţoiu, J. Ruppenthal, “On Hartogs' extension theorem on $(n - 1)$-complete complex spaces”, J. Reine Angew. Math., 2009:637 (2009), 41–47
  11. R. J. Dwilewicz, “Holomorphic extensions in complex fiber bundles”, J. Math. Anal. Appl., 322:2 (2006), 556–565
  12. S. Feklistov, A. Shchuplev, “The Hartogs extension phenomenon in toric varieties”, J. Geom. Anal., 31:12 (2021), 12034–12052
  13. J. Gandini, “Embeddings of spherical homogeneous spaces”, Acta Math. Sin. (Engl. Ser.), 34:3 (2018), 299–340
  14. Комплексный анализ – многие переменные – 7, Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления, 74, ред. Г. Грауэрт, Т. Петернел, Р. Реммерт, Р. В. Гамкрелидзе, ВИНИТИ, М., 1996, 472 с.
  15. Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981, 600 с.
  16. R. Harvey, “The theory of hyperfunctions on totally real subsets of a complex manifold with applications to extension problems”, Amer. J. Math., 91:4 (1969), 853–873
  17. Дж. Хамфри, Линейные алгебраические группы, Наука, M., 1980, 400 с.
  18. M. A. Marciniak, Holomorphic extensions in toric varieties, Thesis (Ph.D.), Missouri Univ. of Science and Technology, Missouri, 2009, 147 pp.
  19. M. A. Marciniak, “Holomorphic extensions in smooth toric surfaces”, J. Geom. Anal., 22:4 (2012), 911–933
  20. J. Merker, E. Porten, “The Hartogs extension theorem on $(n-1)$-complete complex spaces”, J. Reine Angew. Math., 2009:637 (2009), 23–39
  21. G. Peschke, “The theory of ends”, Nieuw Arch. Wisk. (4), 8:1 (1990), 1–12
  22. H. Rossi, “Vector fields on analytic spaces”, Ann. of Math. (2), 78:3 (1963), 455–467
  23. J.-P. Serre, “Quelques problèmes globaux relatifs aux varietes de Stein”, Colloque sur les fonctions de plusieurs variables (Bruxelles, 1953), Georges Thone, Liège; Masson & Cie, Paris, 1953, 57–68
  24. M. R. Sepanski, Compact Lie groups, Grad. Texts in Math., 235, Springer, New York, 2007, xiv+198 pp.
  25. H. Sumihiro, “Equivariant completion”, J. Math. Kyoto Univ., 14:1 (1974), 1–28
  26. N. Ovrelid, S. Vassiliadou, “Hartogs extension theorems on Stein spaces”, J. Geom. Anal., 20:4 (2010), 817–836
  27. V. Vîjîitu, “On Hartogs' extension”, Ann. Mat. Pura Appl. (4), 201:1 (2022), 487–498
  28. D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia Math. Sci., 138, Invariant Theory and Algebraic Transformation Groups, 8, Springer, Heidelberg, 2011, xxii+253 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Feklistov S.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).