Finite groups of bimeromorphic self-maps of nonuniruled Kähler threefolds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We prove the Jordan property for groups of bimeromorphic self-maps of three-dimensional compact Kähler varieties of nonnegative Kodaira dimension and positive irregularity.Bibliography: 32 titles.

About the authors

Yuri Gennadievich Prokhorov

Steklov Mathematical Institute of Russian Academy of Sciences; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)

Email: prokhoro@mi-ras.ru
Doctor of physico-mathematical sciences, Professor

Constantin Aleksandrovich Shramov

Steklov Mathematical Institute of Russian Academy of Sciences; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)

Email: costya.shramov@gmail.com
Doctor of physico-mathematical sciences, no status

References

  1. V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry, The Russell festschrift (McGill Univ., Montreal, QC, 2009), CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311
  2. Yu. Prokhorov, C. Shramov, “Automorphism groups of compact complex surfaces”, Int. Math. Res. Not. IMRN, 2021:14 (2021), 10490–10520
  3. V. L. Popov, “The Jordan property for Lie groups and automorphism groups of complex spaces”, Math. Notes, 103:5 (2018), 811–819
  4. Jin Hong Kim, “Jordan property and automorphism groups of normal compact Kähler varieties”, Commun. Contemp. Math., 20:3 (2018), 1750024, 9 pp.
  5. Sheng Meng, F. Perroni, De-Qi Zhang, “Jordan property for automorphism groups of compact spaces in Fujiki's class $mathscr{C}$”, J. Topol., 15:2 (2022), 806–814
  6. Ю. Г. Прохоров, К. А. Шрамов, “Группы автоморфизмов трехмерных мойшезоновых многообразий”, Матем. заметки, 106:4 (2019), 636–640
  7. Ю. Г. Прохоров, К. А. Шрамов, “Конечные группы бимероморфных автоморфизмов унилинейчатых трехмерных кэлеровых многообразий”, Изв. РАН. Сер. матем., 84:5 (2020), 169–196
  8. T. Bandman, Yu. G. Zarhin, “Bimeromorphic automorphism groups of certain $mathbb{P}^1$-bundles”, Eur. J. Math., 7 (2021), 641–670
  9. T. Bandman, Yu. G. Zarhin, Automorphism groups of $mathbb{P}^1$-bundles over a non-uniruled base
  10. T. Bandman, Yu. G. Zarhin, Simple complex tori of algebraic dimension $0$
  11. Ю. Г. Зархин, “Комплексные торы, тэта-группы и их свойства Жордана”, Алгебра, теория чисел и алгебраическая геометрия, Сборник статей. Посвящается памяти академика Игоря Ростиславовича Шафаревича, Труды МИАН, 307, МИАН, М., 2019, 32–62
  12. A. Höring, Th. Peternell, “Minimal models for Kähler threefolds”, Invent. Math., 203:1-2 (2016), 217–264
  13. M. Brunella, “A positivity property for foliations on compact Kähler manifolds”, Internat. J. Math., 17:1 (2006), 35–43
  14. J.-P. Demailly, Th. Peternell, “A Kawamata–Viehweg vanishing theorem on compact Kähler manifolds”, J. Differential Geom., 63:2 (2003), 231–277
  15. Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072
  16. Ю. Г. Прохоров, “Эквивариантная программа минимальных моделей”, УМН, 76:3(459) (2021), 93–182
  17. A. Fujiki, “A theorem on bimeromorphic maps of Kähler manifolds and its applications”, Publ. Res. Inst. Math. Sci., 17:2 (1981), 735–754
  18. A. Golota, Jordan property for groups of bimeromorphic automorphisms of compact Kähler threefolds
  19. K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Notes written in collaboration with P. Cherenack, Lecture Notes in Math., 439, Springer-Verlag, Berlin–New York, 1975, xix+278 pp.
  20. M. Reid, “Canonical 3-folds”, Journees de geometrie algebrique (Angers, 1979), Sijthoff & Noordhoff, Alphen aan den Rijn–Germantown, MD, 1980, 273–310
  21. J. Kollar, Sh. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens, A. Corti, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
  22. J.-P. Serre, “Bounds for the orders of the finite subgroups of $G(k)$”, Group representation theory, EPFL Press, Lausanne, 2007, 405–450
  23. C. Birkenhake, H. Lange, Complex abelian varieties, Grundlehren Math. Wiss., 302, 2nd ed., Springer-Verlag, Berlin, 2004, xii+635 pp.
  24. P. Graf, “Algebraic approximation of Kähler threefolds of Kodaira dimension zero”, Math. Ann., 371:1-2 (2018), 487–516
  25. Ю. Г. Прохоров, К. А. Шрамов, “Ограниченные группы автоморфизмов компактных комплексных поверхностей”, Матем. сб., 211:9 (2020), 105–118
  26. В. В. Шокуров, “Трехмерные логперестройки”, Изв. РАН. Сер. матем., 56:1 (1992), 105–203
  27. Juanyong Wang, “On the Iitaka conjecture $C_{n,m}$ for Kähler fibre spaces”, Ann. Fac. Sci. Toulouse Math. (6), 30:4 (2021), 813–897
  28. J. Kollar, “Flops”, Nagoya Math. J., 113 (1989), 15–36
  29. N. Nakayama, “The lower semi-continuity of the plurigenera of complex varieties”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 551–590
  30. Вик. С. Куликов, “Разложение бирационального отображения трехмерных многообразий вне коразмерности 2”, Изв. АН СССР. Сер. матем., 46:4 (1982), 881–895
  31. W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp.
  32. J. Varouchas, “Kähler spaces and proper open morphisms”, Math. Ann., 283:1 (1989), 13–52

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Prokhorov Y.G., Shramov C.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).