Hodge level of weighted complete intersections of general type

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We show that smooth varieties of general type that are well-formed weighted complete intersections of Cartier divisors have the maximal Hodge level, that is, their rightmost middle Hodge numbers do not vanish. We show that this does not hold in the quasi-smooth case.Bibliography: 23 titles.

About the authors

Victor Vladimirovich Przyjalkowski

Steklov Mathematical Institute of Russian Academy of Sciences

Email: victorprz@mi-ras.ru

Doctor of physico-mathematical sciences, no status

Russian Federation

References

  1. В. И. Данилов, “Геометрия торических многообразий”, УМН, 33:2(200) (1978), 85–134
  2. В. В. Пржиялковский, К. А. Шрамов, “Взвешенные полные пересечения Фано большой коразмерности”, Сиб. матем. журн., 61:2 (2020), 377–384
  3. В. В. Пржиялковский, К. А. Шрамов, “Гладкие полные пересечения Фано основной серии в торических многообразиях”, Матем. заметки, 109:4 (2021), 590–596
  4. V. V. Batyrev, D. A. Cox, “On the Hodge structure of projective hypersurfaces in toric varieties”, Duke Math. J., 75:2 (1994), 293–338
  5. J. A. Carlson, “Extensions of mixed Hodge structures”, Journees de geometrie algebrique (Angers, 1979), Sijthoff & Noordhoff, Alphen aan den Rijn–Germantown, MD, 1980, 107–127
  6. D. I. Cartwright, T. Steger, “Enumeration of the 50 fake projective planes”, C. R. Math. Acad. Sci. Paris, 348:1-2 (2010), 11–13
  7. Jheng-Jie Chen, Jungkai A. Chen, Meng Chen, “On quasismooth weighted complete intersections”, J. Algebraic Geom., 20:2 (2011), 239–262
  8. A. Dimca, “Residues and cohomology of complete intersections”, Duke Math. J., 78:1 (1995), 89–100
  9. I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields (Vancouver, BC, 1981), Lecture Notes in Math., 956, Springer, Berlin, 1982, 34–71
  10. E. Fatighenti, G. Mongardi, “A note on a Griffiths-type ring for complete intersections in Grassmannians”, Math. Z., 299:3-4 (2021), 1651–1672
  11. P. Griffiths, “On the periods of certain rational integrals. I, II”, Ann. of Math. (2), 90:3 (1969), 460–495, 496–541
  12. A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173
  13. A. Kasprzyk, “Bounds on fake weighted projective space”, Kodai Math. J., 32:2 (2009), 197–208
  14. A. R. Mavlyutov, “Cohomology of complete intersections in toric varieties”, Pacific J. Math., 191:1 (1999), 133–144
  15. D. Mumford, “An algebraic surface with $K$ ample, $(K^2)=9$, $p_g=q=0$”, Amer. J. Math., 101:1 (1979), 233–244
  16. J. Nagel, “The Abel–Jacobi map for complete intersections”, Indag. Math. (N.S.), 8:1 (1997), 95–113
  17. M. Pizzato, T. Sano, L. Tasin, “Effective nonvanishing for Fano weighted complete intersections”, Algebra Number Theory, 11:10 (2017), 2369–2395
  18. V. Przyjalkowski, C. Shramov, “Hodge level for weighted complete intersections”, Collect. Math., 71:3 (2020), 549–574
  19. V. Przyjalkowski, C. Shramov, Weighted complete intersections, preprint
  20. M. Rapoport, “Complement à l'article de P. Deligne ‘La conjecture de Weil pour les surfaces $K3$’ ”, Invent. Math., 15 (1972), 227–236
  21. J. B. Rosser, L. Schoenfeld, “Approximate formulas for some functions of prime numbers”, Illinois J. Math., 6 (1962), 64–94
  22. M. Rossi, L. Terracini, “Linear algebra and toric data of weighted projective spaces”, Rend. Semin. Mat. Univ. Politec. Torino, 70:4 (2012), 469–495
  23. J. J. Sylvester, “On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order”, Amer. J. Math., 5:1 (1882), 79–136

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Przyjalkowski V.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).