Some applications of growth in $\mathrm{SL}_2(\pmb{\mathbb{F}}_p)$ to the proof of modular versions of Zaremba's conjecture

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using growth in $\mathrm{SL}_2(\mathbb{F}_p)$ we prove that for every prime number $p$ and any positive integer $u$ there are positive integers $q=O(p^{2+\varepsilon})$, $\varepsilon > 0$, $q \equiv u \pmod{p}$, and $a < p$, $(a, p)=1$, such that the partial quotients of the continued fraction of $a/q$ are bounded by an absolute constant.Bibliography: 21 titles.

About the authors

Mikhail Vladimirovich Lyamkin

Steklov Mathematical Institute of Russian Academy of Sciences

without scientific degree, no status

References

  1. J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Ann. of Math. (2), 180:1 (2014), 137–196
  2. J. Bourgain, A. Gamburd, “Uniform expansion bounds for Cayley graphs of $operatorname{SL}_2(mathbb{F}_p)$”, Ann. of Math. (2), 167:2 (2008), 625–642
  3. L. E. Dickson, “Theory of linear groups in an arbitrary field”, Trans. Amer. Math. Soc., 2:4 (1901), 363–394
  4. L. E. Dickson, Linear groups: With an exposition of the Galois field theory, With an introduction by W. Magnus, Dover Publications, Inc., New York, 1958, xvi+312 pp.
  5. W. T. Gowers, “Quasirandom groups”, Combin. Probab. Comput., 17:3 (2008), 363–387
  6. H. A. Helfgott, “Growth and generation in $operatorname{SL}_2(mathbb{Z}/pmathbb{Z})$”, Ann. of Math. (2), 167:2 (2008), 601–623
  7. D. A. Hensley, “The distribution $operatorname{mod} n$ of fractions with bounded partial quotients”, Pacific J. Math, 166:1 (1994), 43–54
  8. D. Hensley, “The distribution of badly approximable rationals and continuants with bounded digits. II”, J. Number Theory, 34:3 (1990), 293–334
  9. D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits”, Theorie des nombres (Quebec, PQ, 1987), de Gruyter, Berlin, 1989, 371–385
  10. А. Я. Хинчин, Цепные дроби, 3-е изд., Физматгиз, Л., 1961, 112 с.
  11. Р. Хорн, Ч. Джонсон, Матричный анализ, Мир, М., 1989, 656 с.
  12. O. Jenkinson, M. Pollicott, “Computing the dimension of dynamically defined sets: $E_2$ and bounded continued fractions”, Ergodic Theory Dynam. Systems, 21:5 (2001), 1429–1445
  13. A. Kontorovich, “Levels of distribution and the affine sieve”, Ann. Fac. Sci. Toulouse Math. (6), 23:5 (2014), 933–966
  14. E. Kowalski, “Explicit growth and expansion for $operatorname{SL}_2$”, Int. Math. Res. Not. IMRN, 2013:24 (2013), 5645–5708
  15. M. Magee, Hee Oh, D. Winter, “Uniform congruence counting for Schottky semigroups in $operatorname{SL}_2(mathbb{Z})$”, J. Reine Angew. Math., 2019:753 (2019), 89–135
  16. N. Moshchevitin, B. Murphy, I. Shkredov, “Popular products and continued fractions”, Israel J. Math., 238:2 (2020), 807–835
  17. N. G. Moshchevitin, I. D. Shkredov, “On a modular form of Zaremba's conjecture”, Pacific J. Math., 309:1 (2020), 195–211
  18. М. А. Наймарк, Теория представлений групп, Наука, М., 1976, 560 с.
  19. M. Rudnev, I. D. Shkredov, “On the growth rate in $operatorname{SL}_2(mathbb{F}_p)$, the affine group and sum-product type implications”, Mathematika, 68:3 (2022), 738–783
  20. I. D. Shkredov, Growth in Chevalley groups relatively to parabolic subgroups and some applications, 2020
  21. И. Д. Шкредов, “Некоммутативные методы в аддитивной комбинаторике и теории чисел”, УМН, 76:6(462) (2021), 119–180

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Lyamkin M.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).