Derivative of the Minkowski function: optimal estimates
- Authors: Gayfulin D.R.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 213, No 10 (2022)
- Pages: 60-89
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133468
- DOI: https://doi.org/10.4213/sm9692
- ID: 133468
Cite item
Abstract
It is well known that the derivative of the Minkowski function $?(x)$, if it exists, can take only two values, $0$ and $+\infty$. It is also known that the value of $?'(x)$ at a point $x=[0;a_1,a_2,…,a_t,…]$ is related to the limiting behaviour of the arithmetic mean $(a_1+a_2+…+a_t)/t$. In particular, as shown by Moshchevitin and Dushistova, if $a_1+a_2+…+a_t>(\kappa_2+\varepsilon)t$, where $\varepsilon>0$ and $\kappa_2\approx 4.4010487$ is some explicitly given constant, then $?'(x)=0$. They also showed that $\kappa_2$ cannot be replaced by a smaller constant. We consider the dual problem: how small can the quantity $\kappa_2t-a_1+a_2+…+a_t$ be if it is known that $?'(x)=0$? We obtain optimal estimates in this problem.Bibliography: 9 titles.
Keywords
About the authors
Dmitry Radislavovich Gayfulin
Steklov Mathematical Institute of Russian Academy of SciencesCandidate of physico-mathematical sciences, no status
References
- H. Minkowski, “Zur Geometrie der Zahlen”, Verhandlungen des dritten Internationalen Mathematiker-Kongresses (Heidelberg, 1904), B. G. Teubner, Leipzig, 1905, 164–173
- R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439
- P. Viader, J. Paradis, L. Bibiloni, “A new light on Minkowski's $?(x)$ function”, J. Number Theory, 73:2 (1998), 212–227
- J. Paradis, P. Viader, L. Bibiloni, “The derivative of Minkowski's $?(x)$ function”, J. Math. Anal. Appl., 253:1 (2001), 107–125
- И. Д. Кан, “Методы получения оценок континуантов”, Фундамент. и прикл. матем., 16:6 (2010), 95–108
- A. A. Dushistova, I. D. Kan, N. G. Moshchevitin, “Differentiability of the Minkowski question mark function”, J. Math. Anal. Appl., 401:2 (2013), 774–794
- Д. Р. Гайфулин, И. Д. Кан, “Производная функции Минковского”, Изв. РАН. Сер. матем., 85:4 (2021), 5–52
- D. Gayfulin, On the derivative of the Minkowski question-mark function, 2021
- T. S. Motzkin, E. G. Straus, “Some combinatorial extremum problems”, Proc. Amer. Math. Soc., 7:6 (1956), 1014–1021
Supplementary files

