Derivative of the Minkowski function: optimal estimates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is well known that the derivative of the Minkowski function $?(x)$, if it exists, can take only two values, $0$ and $+\infty$. It is also known that the value of $?'(x)$ at a point $x=[0;a_1,a_2,…,a_t,…]$ is related to the limiting behaviour of the arithmetic mean $(a_1+a_2+…+a_t)/t$. In particular, as shown by Moshchevitin and Dushistova, if $a_1+a_2+…+a_t>(\kappa_2+\varepsilon)t$, where $\varepsilon>0$ and $\kappa_2\approx 4.4010487$ is some explicitly given constant, then $?'(x)=0$. They also showed that $\kappa_2$ cannot be replaced by a smaller constant. We consider the dual problem: how small can the quantity $\kappa_2t-a_1+a_2+…+a_t$ be if it is known that $?'(x)=0$? We obtain optimal estimates in this problem.Bibliography: 9 titles.

About the authors

Dmitry Radislavovich Gayfulin

Steklov Mathematical Institute of Russian Academy of Sciences

Candidate of physico-mathematical sciences, no status

References

  1. H. Minkowski, “Zur Geometrie der Zahlen”, Verhandlungen des dritten Internationalen Mathematiker-Kongresses (Heidelberg, 1904), B. G. Teubner, Leipzig, 1905, 164–173
  2. R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439
  3. P. Viader, J. Paradis, L. Bibiloni, “A new light on Minkowski's $?(x)$ function”, J. Number Theory, 73:2 (1998), 212–227
  4. J. Paradis, P. Viader, L. Bibiloni, “The derivative of Minkowski's $?(x)$ function”, J. Math. Anal. Appl., 253:1 (2001), 107–125
  5. И. Д. Кан, “Методы получения оценок континуантов”, Фундамент. и прикл. матем., 16:6 (2010), 95–108
  6. A. A. Dushistova, I. D. Kan, N. G. Moshchevitin, “Differentiability of the Minkowski question mark function”, J. Math. Anal. Appl., 401:2 (2013), 774–794
  7. Д. Р. Гайфулин, И. Д. Кан, “Производная функции Минковского”, Изв. РАН. Сер. матем., 85:4 (2021), 5–52
  8. D. Gayfulin, On the derivative of the Minkowski question-mark function, 2021
  9. T. S. Motzkin, E. G. Straus, “Some combinatorial extremum problems”, Proc. Amer. Math. Soc., 7:6 (1956), 1014–1021

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Gayfulin D.R.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).