Self-affine $2$-attractors and tiles
- Authors: Zaitseva T.I.1,2, Protasov V.Y.3,2
-
Affiliations:
- Moscow Center for Fundamental and Applied Mathematics
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- University of L’Aquila
- Issue: Vol 213, No 6 (2022)
- Pages: 71-110
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133451
- DOI: https://doi.org/10.4213/sm9682
- ID: 133451
Cite item
Abstract
We study two-digit attractors (2-attractors) in $\mathbb{R}^d$, which are self-affine compact sets defined by two affine contractions with the same linear part. They have widely been studied in the literature under various names (integer self-affine 2-tiles, twindragons, two-digit tiles, 2-reptiles and so on) due to many applications in approximation theory, in the construction of multivariate Haar systems and other wavelet bases, in discrete geometry and in number theory. We obtain a complete classification of isotropic 2-attractors in $\mathbb{R}^d$ and show that all of them are pairwise homeomorphic but not diffeomorphic. In the general, nonisotropic, case weprove that a 2-attractor is uniquely defined by the spectrum of the dilation matrix up to affine similarity. We estimate the number of different 2-attractors in $\mathbb{R}^d$ by analysing integer unitary expanding polynomials with free coefficient $\pm2$. The total number of such polynomials is estimated using the Mahler measure. We present several infinite series of such polynomials. For some 2-attractors their Hölder exponents are found. Some of our results are extended to attractors with an arbitrary number of digits.Bibliography: 63 titles.
About the authors
Tatyana Ivanovna Zaitseva
Moscow Center for Fundamental and Applied Mathematics; Lomonosov Moscow State University, Faculty of Mechanics and Mathematicswithout scientific degree, no status
Vladimir Yur'evich Protasov
University of L’Aquila; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Email: v-protassov@yandex.ru
Doctor of physico-mathematical sciences, no status
References
- S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner, “Generalized radix representations and dynamical systems. III”, Osaka J. Math., 45:2 (2008), 347–374
- S. Akiyama, N. Gjini, “On the connectedness of self-affine attractors”, Arch. Math. (Basel), 82:2 (2004), 153–163
- S. Akiyama, B. Loridant, “Boundary parametrization of planar self-affine tiles with collinear digit set”, Sci. China Math., 53:9 (2010), 2173–2194
- S. Akiyama, B. Loridant, J. M. Thuswaldner, “Topology of planar self-affine tiles with collinear digit set”, J. Fractal Geom., 8:1 (2021), 53–93
- S. Akiyama, A. Pethő, “On the distribution of polynomials with bounded roots. II. Polynomials with integer coefficients”, Unif. Distrib. Theory, 9:1 (2014), 5–19
- S. Akiyama, J. M. Thuswaldner, “A survey on topological properties of tiles related to number systems”, Geom. Dedicata, 109:1 (2004), 89–105
- C. Bandt, Combinatorial topology of three-dimensional self-affine tiles
- C. Bandt, “Self-similar sets. V. Integer matrices and fractal tilings of $mathbb R^n$”, Proc. Amer. Math. Soc., 112:2 (1991), 549–562
- C. Bandt, G. Gelbrich, “Classification of self-affine lattice tilings”, J. London Math. Soc. (2), 50:3 (1994), 581–593
- J. J. Benedetto, M. T. Leon, “The construction of multiple dyadic minimally supported frequency wavelets on $mathbb R^d$”, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999, 43–74
- J. J. Benedetto, S. Sumetkijakan, “Tight frames and geometric properties of wavelet sets”, Adv. Comput. Math., 24:1-4 (2006), 35–56
- C. Bandt, Y. Wang, “Disk-like self-affine tiles in $mathbb R^2$”, Discrete Comput. Geom., 26:4 (2001), 591–601
- M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 164, no. 781, Amer. Math. Soc., Providence, RI, 2003, vi+122 pp.
- A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991, vi+186 pp.
- M. Cotronei, D. Ghisi, M. Rossini, T. Sauer, “An anisotropic directional subdivision and multiresolution scheme”, Adv. Comput. Math., 41 (2015), 709–726
- C. A. Cabrelli, C. Heil, U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004, viii+82 pp.
- M. Charina, T. Mejstrik, “Multiple multivariate subdivision schemes: matrix and operator approaches”, J. Comput. Appl. Math., 349 (2019), 279–291
- M. Charina, V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821
- A. Cohen, K. Gröchenig, L. F. Villemoes, “Regularity of multivariate refinable functions”, Constr. Approx., 15:2 (1999), 241–255
- G. R. Conner, J. M. Thuswaldner, “Self-affine manifolds”, Adv. Math., 289 (2016), 725–783
- N. Desprez, Chaoscope, Software
- A. Dubickas, S. V. Konyagin, “On the number of polynomials of bounded measure”, Acta Arith., 86:4 (1998), 325–342
- Qi-Rong Deng, Ka-sing Lau, “Connectedness of a class of planar self-affine tiles”, J. Math. Anal. Appl., 380:2 (2011), 493–500
- Xingde Dai, D. R. Larson, D. M. Speegle, “Wavelet sets in $mathbb R^n$”, J. Fourier Anal. Appl., 3:4 (1997), 451–456
- A. Dubickas, “Counting integer reducible polynomials with bounded measure”, Appl. Anal. Discrete Math., 10:2 (2016), 308–324
- Xiaoye Fu, J.-P. Gabardo, Self-affine scaling sets in $mathbb R^2$, Mem. Amer. Math. Soc., 233, no. 1097, Amer. Math. Soc., Providence, RI, 2015, vi+85 pp.
- W. J. Gilbert, “Radix representations of quadratic fields”, J. Math. Anal. Appl., 83:1 (1981), 264–274
- A. M. Garsia, “Arithmetic properties of Bernoulli convolutions”, Trans. Amer. Math. Soc., 102:3 (1962), 409–432
- G. Gelbrich, “Self-affine lattice reptiles with two pieces in $mathbb R^n$”, Math. Nachr., 178:1 (1996), 129–134
- R. F. Gundy, A. L. Jonsson, “Scaling functions on $mathbb R^2$ for dilations of determinant $pm 2$”, Appl. Comput. Harmon. Anal., 29:1 (2010), 49–62
- C. Gröchenig, W. R. Madych, “Multiresolution analysis, Haar bases, and self-similar tilings of $mathbf R^n$”, IEEE Trans. Inform. Theory, 38:2, Part 2 (1992), 556–568
- K. Gröchenig, A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170
- Xing-Gang He, Ka-Sing Lau, “Characterization of tile digit sets with prime determinants”, Appl. Comput. Harmon. Anal., 16:3 (2004), 159–173
- D. Hacon, N. C. Saldanha, J. J. P. Veerman, “Remarks on self-affine tilings”, Exp. Math., 3:4 (1994), 317–327
- I. Kirat, Ka-Sing Lau, “On the connectedness of self-affine tiles”, J. London Math. Soc. (2), 62:1 (2000), 291–304
- I. Kirat, Ka-Sing Lau, “Classification of integral expanding matrices and self-affine tiles”, Discrete Comput. Geom., 28:1 (2002), 49–73
- I. Kirat, Ka-Sing Lau, Hui Rao, “Expanding polynomials and connectedness of self-affine tiles”, Discrete Comput. Geom., 31:2 (2004), 275–286
- A. Kravchenko, D. Mekhontsev, IFS Builder 3d, Software
- A. Krivoshein, V. Protasov, M. Skopina, Multivariate wavelets frames, Ind. Appl. Math., Springer, Singapore, 2016, xiii+248 pp.
- P. Kirschenhofer, J. M. Thuswaldner, “Shift radix systems–a survey”, Numeration and substitution 2012, RIMS Kôkyûroku Bessatsu, B46, Res. Inst. Math. Sci. (RIMS), Kyoto, 2014, 1–59
- P. Kirschenhofer, A. Thuswaldner, “Distribution results on polynomials with bounded roots”, Monatsh. Math., 185:4 (2018), 689–715
- J. C. Lagarias, Yang Wang, “Haar type orthonormal wavelet bases in $mathbf R^2$”, J. Fourier Anal. Appl., 2:1 (1995), 1–14
- J. C. Lagarias, Yang Wang, “Haar bases for $L^2(mathbb R^n)$ and algebraic number theory”, J. Number Theory, 57:1 (1996), 181–197
- J. C. Lagarias, Yang Wang, “Integral self-affine tiles in $mathbb R^n$. II. Lattice tilings”, J. Fourier Anal. Appl., 3:1 (1997), 83–102
- J. Lagarias, Yang Wang, “Corrigendum/addendum: “Haar bases for $L_2(mathbb R^n)$ and algebraic number theory””, J. Number Theory, 76:2 (1999), 330–336
- T. Mejstrik, “Algorithm 1011: improved invariant polytope algorithm and applications”, ACM Trans. Math. Software, 46:3 (2020), 29, 26 pp.
- D. Mekhontsev, IFStile, Software
- K. D. Merrill, “Simple wavelet sets in $mathbb R^n$”, J. Geom. Anal., 25:2 (2015), 1295–1305
- K. D. Merrill, Generalized multiresolution analyses, Lect. Notes Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2018, x+113 pp.
- F. Morgan, Geometric measure theory. A beginner's guide, Academic Press, Inc., Boston, MA, 1988, viii+145 pp.
- И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, Теория всплесков, Физматлит, М., 2005, 613 с.
- Sze-Man Ngai, V. F. Sirvent, J. J. P. Veerman, Yang Wang, “On 2-reptiles in the plane”, Geom. Dedicata, 82:1-3 (2000), 325–344
- В. Ю. Протасов, “Обобщенный совместный спектральный радиус. Геометрический подход”, Изв. РАН. Сер. матем., 61:5 (1997), 99–136
- V. Yu. Protasov, “Surface dimension, tiles, and synchronizing automata”, SIAM J. Math. Anal., 52:4 (2020), 3463–3486
- H. Rademacher, “Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variablen und über die Transformation der Doppelintegrale”, Math. Ann., 79:4 (1919), 340–359
- W. Steiner, J. M. Thuswaldner, “Rational self-affine tiles”, Trans. Amer. Math. Soc., 367:11 (2015), 7863–7894
- J. M. Thuswaldner, Shu-qin Zhang, “On self-affine tiles whose boundary is a sphere”, Trans. Amer. Math. Soc., 373:1 (2020), 491–527
- M. Uray, On the expansivity gap of integer polynomials
- H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77:3 (1916), 313–352
- P. Wojtaszczyk, A mathematical introduction to wavelets, London Math. Soc. Stud. Texts, 37, Cambridge Univ. Press, Cambridge, 1997, xii+261 pp.
- T. Zaitseva, “Haar wavelets and subdivision algorithms on the plane”, Adv. Syst. Sci. Appl., 17:3 (2017), 49–57
- Т. И. Зайцева, “Простые тайлы и аттракторы”, Матем. сб., 211:9 (2020), 24–59
- V. G. Zakharov, “Rotation properties of 2D isotropic dilation matrices”, Int. J. Wavelets Multiresolut. Inf. Process., 16:1 (2018), 1850001, 14 pp.
Supplementary files

