Strong convexity of reachable sets of linear systems
- Authors: Balashov M.V.1
-
Affiliations:
- V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
- Issue: Vol 213, No 5 (2022)
- Pages: 30-49
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133442
- DOI: https://doi.org/10.4213/sm9627
- ID: 133442
Cite item
Abstract
The reachable set on some time interval of a linear control system $x'\in Ax {+} U$, $x(0)=0$, is considered. A number of cases is examined when the reachable set is the intersection of some balls of fixed radius $R$ (that is, a strongly convex set of radius $R$). In some cases the radius $R$ is estimated from above. It turns out that strong convexity is fairly typical for this class of reachable sets in a certain sense. Among possible applications of this result are the possibility of constructing outer polyhedral approximation of reachable sets with better accuracy in the Hausdorff metric than in the general case, and applications to linear differential games and some optimization problems. Bibliography: 23 titles.
About the authors
Maxim Viktorovich Balashov
V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
Email: balashov73@mail.ru
Doctor of physico-mathematical sciences, Associate professor
References
- Э. Б. Ли, Л. Маркус, Основы теории оптимального управления, Наука, М., 1972, 574 с.
- M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, Diagnosis and fault-tolerant control, Springer, Berlin, 2003, xvii+571 pp.
- A. Chutinan, B. H. Krogh, “Computational techniques for hybrid system verification”, IEEE Trans. Automat. Control, 48:1 (2003), 64–75
- A. B. Singer, P. I. Barton, “Global optimization with nonlinear ordinary differential equations”, J. Global Optim., 34:2 (2006), 159–190
- R. J. Aumann, “Integrals of set-valued functions”, J. Math. Anal. Appl., 12:1 (1965), 1–12
- А. А. Ляпунов, “О вполне аддитивных вектор-функциях”, Изв. АН СССР. Сер. матем., 4:6 (1940), 465–478
- Л. С. Понтрягин, “Линейные дифференциальные игры преследования”, Матем. сб., 112(154):3(7) (1980), 307–330
- Н. Н. Красовский, Теория управления движением. Линейные системы, Наука, М., 1968, 475 с.
- A. B. Kurzhanski, P. Varaiya, “On verification of controlled hybrid dynamics through ellipsoidal techniques”, Proceedings of the 44th IEEE conference on decision and control (Seville, 2005), IEEE, 2005, 4682–4687
- Inseok Hwang, D. M. Stipanovic, C. J. Tomlin, “Polytopic approximations of reachable sets applied to linear dynamic games and a class of nonlinear systems”, Advances in control, communication networks, and transportation systems, Systems Control Found. Appl., Birkhäuser Boston, Boston, MA, 2005, 3–19
- Г. Е. Иванов, Е. С. Половинкин, “О сильно выпуклых линейных дифференциальных играх”, Дифференц. уравнения, 31:10 (1995), 1641–1648
- М. В. Балашов, “О многогранных аппроксимациях в $n$-мерном пространстве”, Ж. вычисл. матем. и матем. физ., 56:10 (2016), 1695–1701
- J.-Ph. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259
- Е. С. Половинкин, “Сильно выпуклый анализ”, Матем. сб., 187:2 (1996), 103–130
- Е. С. Половинкин, М. В. Балашов, Элементы выпуклого и сильно выпуклого анализа, 2-е изд., Физматлит, М., 2007, 438 с.
- A. Weber, G. Reissig, “Local characterization of strongly convex sets”, J. Math. Anal. Appl., 400:2 (2013), 743–750
- A. Weber, G. Reissig, “Classical and strong convexity of sublevel sets and application to attainable sets of nonlinear systems”, SIAM J. Control Optim., 52:5 (2014), 2857–2876
- H. Frankowska, C. Olech, “$R$-convexity of the integral of set-valued functions”, Contributions to analysis and geometry (Baltimore, MD, 1980), Johns Hopkins Univ. Press, Baltimore, MD, 1981, 117–129
- M. V. Balashov, “Lipschitz stability of extremal problems with a strongly convex set”, J. Convex Anal., 27:1 (2020), 103–116
- Е. С. Половинкин, Многозначный анализ и дифференциальные включения, Физматлит, М., 2015, 524 с.
- Р. Рокафеллар, Выпуклый анализ, Мир, М., 1973, 472 с.
- M. V. Balashov, “Chebyshev center and inscribed balls: properties and calculations”, Optim. Lett., 2021, 1–14, Publ. online
- V. V. Goncharov, G. E. Ivanov, “Strong and weak convexity of closed sets in a Hilbert space”, Operations research, engineering, and cyber security, Springer Optim. Appl., 113, Springer, Cham, 2017, 259–297
Supplementary files

