On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials $f$ over algebraic number fields

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We obtain a complete description of the fields $\mathbb K$ that are extensions of $\mathbb Q$ of degree at most $3$ and the cubic polynomials $f \in\mathbb K[x]$ such that the expansion of $\sqrt{f}$ into a continued fraction in the field of formal power series $\mathbb K((x))$ is periodic. We prove a finiteness theorem for cubic polynomials $f \in\mathbb K[x]$ with a periodic expansion of $\sqrt{f}$ for extensions of $\mathbb Q$ of degree at most $6$. We obtain a description of the periodic elements $\sqrt{f}$ for the cubic polynomials $f(x)$ defining elliptic curves with points of order $3 \le N\le 42$, $N \ne 37, 41$.Bibliography: 19 titles.

作者简介

Vladimir Platonov

Scientific Research Institute for System Analysis of the Russian Academy of Sciences; Steklov Mathematical Institute of Russian Academy of Sciences

Email: platonov@mi-ras.ru
Doctor of physico-mathematical sciences, Professor

Vladimir Zhgoon

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Email: zhgoon@mail.ru
Candidate of physico-mathematical sciences, no status

Maksim Petrunin

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Email: petrushkin@yandex.ru
Candidate of physico-mathematical sciences, no status

参考

  1. В. П. Платонов, “Теоретико-числовые свойства гиперэллиптических полей и проблема кручения в якобианах гиперэллиптических кривых над полем рациональных чисел”, УМН, 69:1(415) (2014), 3–38
  2. В. П. Платонов, В. С. Жгун, Г. В. Федоров, “Непрерывные дроби в гиперэллиптических полях и представление Мамфорда”, Докл. РАН, 471:6 (2016), 640–644
  3. В. П. Платонов, М. М. Петрунин, “Группы $S$-единиц и проблема периодичности непрерывных дробей в гиперэллиптических полях”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 302, МАИК “Наука/Интерпериодика”, М., 2018, 354–376
  4. В. П. Платонов, Г. В. Федоров, “О проблеме периодичности непрерывных дробей в гиперэллиптических полях”, Матем. сб., 209:4 (2018), 54–94
  5. B. Mazur, “Rational points on modular curves”, Modular functions of one variable V (Univ. Bonn, Bonn, 1976), Lecture Notes in Math., 601, Springer, Berlin, 1977, 107–148
  6. D. S. Kubert, “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237
  7. M. A. Kenku, F. Momose, “Torsion points on elliptic curves defined over quadratic fields”, Nagoya Math. J., 109 (1988), 125–149
  8. M. Derickx, A. Etropolski, M. van Hoeij, J. S. Morrow, D. Zureick-Brown, “Sporadic cubic torsion”, Algebra Number Theory, 15:7 (2021), 1837–1864
  9. P. Parent, “Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres”, J. Reine Angew. Math., 1999:506 (1999), 85–116
  10. В. П. Платонов, В. С. Жгун, Г. В. Федоров, “О периодичности непрерывных дробей в гиперэллиптических полях над квадратичным полем констант”, Докл. РАН, 482:2 (2018), 137–141
  11. В. П. Платонов, М. М. Петрунин, В. С. Жгун, Ю. Н. Штейников, “О конечности гиперэллиптических полей со специальными свойствами и периодическим разложением $sqrt{f}$”, Докл. РАН, 483:6 (2018), 609–613
  12. В. П. Платонов, М. М. Петрунин, Ю. Н. Штейников, “О конечности числа эллиптических полей с заданными степенями $S$-единиц и периодическим разложением $sqrt{f}$”, Докл. РАН, 488:3 (2019), 237–242
  13. В. П. Платонов, В. С. Жгун, М. М. Петрунин, “О проблеме периодичности разложений в непрерывную дробь $sqrt{f}$ для кубических многочленов над числовыми полями”, Докл. РАН. Мат. информ. проц. упр., 493:1 (2020), 32–37
  14. В. П. Платонов, М. М. Петрунин, “О конечности числа периодических разложений в непрерывную дробь $sqrt{f}$ для кубических многочленов над полями алгебраических чисел”, Докл. РАН. Мат. информ. проц. упр., 495:1 (2020), 48–54
  15. В. П. Платонов, М. М. Петрунин, “$S$-единицы в гиперэллиптических полях и периодичность непрерывных дробей”, Докл. РАН, 470:3 (2016), 260–265
  16. A. V. Sutherland, “Constructing elliptic curves over finite fields with prescribed torsion”, Math. Comp., 81:278 (2012), 1131–1147
  17. Daeyeol Jeon, Chang Heon Kim, Euisung Park, “On the torsion of elliptic curves over quartic number fields”, J. London Math. Soc. (2), 74:1 (2006), 1–12
  18. M. Derickx, A. V. Sutherland, “Torsion subgroups of elliptic curves over quintic and sextic number fields”, Proc. Amer. Math. Soc., 145:10 (2017), 4233–4245
  19. Daeyeol Jeon, Chang Heon Kim, A. Schweizer, “On the torsion of elliptic curves over cubic number fields”, Acta Arith., 113:3 (2004), 291–301

补充文件

附件文件
动作
1. JATS XML

版权所有 © Platonov V.P., Zhgoon V.S., Petrunin M.M., 2022

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».