On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials $f$ over algebraic number fields

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We obtain a complete description of the fields $\mathbb K$ that are extensions of $\mathbb Q$ of degree at most $3$ and the cubic polynomials $f \in\mathbb K[x]$ such that the expansion of $\sqrt{f}$ into a continued fraction in the field of formal power series $\mathbb K((x))$ is periodic. We prove a finiteness theorem for cubic polynomials $f \in\mathbb K[x]$ with a periodic expansion of $\sqrt{f}$ for extensions of $\mathbb Q$ of degree at most $6$. We obtain a description of the periodic elements $\sqrt{f}$ for the cubic polynomials $f(x)$ defining elliptic curves with points of order $3 \le N\le 42$, $N \ne 37, 41$.Bibliography: 19 titles.

About the authors

Vladimir Petrovich Platonov

Scientific Research Institute for System Analysis of the Russian Academy of Sciences; Steklov Mathematical Institute of Russian Academy of Sciences

Email: platonov@mi-ras.ru
Doctor of physico-mathematical sciences, Professor

Vladimir Sergeevich Zhgoon

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Email: zhgoon@mail.ru
Candidate of physico-mathematical sciences, no status

Maksim Maksimovich Petrunin

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Email: petrushkin@yandex.ru
Candidate of physico-mathematical sciences, no status

References

  1. В. П. Платонов, “Теоретико-числовые свойства гиперэллиптических полей и проблема кручения в якобианах гиперэллиптических кривых над полем рациональных чисел”, УМН, 69:1(415) (2014), 3–38
  2. В. П. Платонов, В. С. Жгун, Г. В. Федоров, “Непрерывные дроби в гиперэллиптических полях и представление Мамфорда”, Докл. РАН, 471:6 (2016), 640–644
  3. В. П. Платонов, М. М. Петрунин, “Группы $S$-единиц и проблема периодичности непрерывных дробей в гиперэллиптических полях”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 302, МАИК “Наука/Интерпериодика”, М., 2018, 354–376
  4. В. П. Платонов, Г. В. Федоров, “О проблеме периодичности непрерывных дробей в гиперэллиптических полях”, Матем. сб., 209:4 (2018), 54–94
  5. B. Mazur, “Rational points on modular curves”, Modular functions of one variable V (Univ. Bonn, Bonn, 1976), Lecture Notes in Math., 601, Springer, Berlin, 1977, 107–148
  6. D. S. Kubert, “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237
  7. M. A. Kenku, F. Momose, “Torsion points on elliptic curves defined over quadratic fields”, Nagoya Math. J., 109 (1988), 125–149
  8. M. Derickx, A. Etropolski, M. van Hoeij, J. S. Morrow, D. Zureick-Brown, “Sporadic cubic torsion”, Algebra Number Theory, 15:7 (2021), 1837–1864
  9. P. Parent, “Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres”, J. Reine Angew. Math., 1999:506 (1999), 85–116
  10. В. П. Платонов, В. С. Жгун, Г. В. Федоров, “О периодичности непрерывных дробей в гиперэллиптических полях над квадратичным полем констант”, Докл. РАН, 482:2 (2018), 137–141
  11. В. П. Платонов, М. М. Петрунин, В. С. Жгун, Ю. Н. Штейников, “О конечности гиперэллиптических полей со специальными свойствами и периодическим разложением $sqrt{f}$”, Докл. РАН, 483:6 (2018), 609–613
  12. В. П. Платонов, М. М. Петрунин, Ю. Н. Штейников, “О конечности числа эллиптических полей с заданными степенями $S$-единиц и периодическим разложением $sqrt{f}$”, Докл. РАН, 488:3 (2019), 237–242
  13. В. П. Платонов, В. С. Жгун, М. М. Петрунин, “О проблеме периодичности разложений в непрерывную дробь $sqrt{f}$ для кубических многочленов над числовыми полями”, Докл. РАН. Мат. информ. проц. упр., 493:1 (2020), 32–37
  14. В. П. Платонов, М. М. Петрунин, “О конечности числа периодических разложений в непрерывную дробь $sqrt{f}$ для кубических многочленов над полями алгебраических чисел”, Докл. РАН. Мат. информ. проц. упр., 495:1 (2020), 48–54
  15. В. П. Платонов, М. М. Петрунин, “$S$-единицы в гиперэллиптических полях и периодичность непрерывных дробей”, Докл. РАН, 470:3 (2016), 260–265
  16. A. V. Sutherland, “Constructing elliptic curves over finite fields with prescribed torsion”, Math. Comp., 81:278 (2012), 1131–1147
  17. Daeyeol Jeon, Chang Heon Kim, Euisung Park, “On the torsion of elliptic curves over quartic number fields”, J. London Math. Soc. (2), 74:1 (2006), 1–12
  18. M. Derickx, A. V. Sutherland, “Torsion subgroups of elliptic curves over quintic and sextic number fields”, Proc. Amer. Math. Soc., 145:10 (2017), 4233–4245
  19. Daeyeol Jeon, Chang Heon Kim, A. Schweizer, “On the torsion of elliptic curves over cubic number fields”, Acta Arith., 113:3 (2004), 291–301

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Platonov V.P., Zhgoon V.S., Petrunin M.M.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).