On tensor fractions and tensor products in the category of stereotype spaces
- Authors: Akbarov S.S.1
-
Affiliations:
- Moscow Institute of Electronics and Mathematics — Higher School of Economics
- Issue: Vol 213, No 5 (2022)
- Pages: 3-29
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133439
- DOI: https://doi.org/10.4213/sm9508
- ID: 133439
Cite item
Abstract
We prove two identities that connect some natural tensor products in the category $\operatorname{LCS}$ of locally convex spaces with tensor products in the category $\operatorname{Ste}$ of stereotype spaces. In particular, we give sufficient conditions under which the identity $$X^\vartriangle\odot Y^\vartriangle\cong (X^\vartriangle\cdot Y^\vartriangle)^\vartriangle\cong (X\cdot Y)^\vartriangle$$holds, where $\odot$ is the injective tensor product in the category $\operatorname{Ste}$, $\cdot $ is the primary tensor product in $\operatorname{LCS}$, and $\vartriangle$ is the pseudosaturation operation in $\operatorname{LCS}$. The study of relations of this type is justified by the fact that they turn out to be important instruments for constructing duality theory based on the notion of an envelope. In particular, they are used in the construction of the duality theory for the class of (not necessarily Abelian) countable discrete groups. Bibliography: 15 titles.
Keywords
About the authors
Sergei Saidmuzafarovich Akbarov
Moscow Institute of Electronics and Mathematics — Higher School of Economics
Email: sergei.akbarov@gmail.com
Doctor of physico-mathematical sciences, Associate professor
References
- С. С. Акбаров, “Двойственность Понтрягина в теории топологических векторных пространств”, Матем. заметки, 57:3 (1995), 463–466
- С. С. Акбаров, “Двойственность Понтрягина в теории топологических модулей”, Функц. анализ и его прил., 29:4 (1995), 68–72
- S. S. Akbarov, “Pontryagin duality in the theory of topological vector spaces and in topological algebra”, J. Math. Sci. (N.Y.), 113:2 (2003), 179–349
- С. С. Акбаров, “Голоморфные функции экспоненциального типа и двойственность для групп Штейна с алгебраической связной компонентой единицы”, Фундамент. и прикл. матем., 14:1 (2008), 3–178
- S. S. Akbarov, Envelopes and refinements in categories, with applications to functional analysis, Dissertationes Math., 513, Polish Acad. Sci. Inst. Math., Warsaw, 2016, 188 pp.
- G. Köthe, Topological vector spaces. I, Grundlehren Math. Wiss., 159, Springer-Verlag, New York, 1969, xv+456 pp.
- O. Yu. Aristov, On holomorphic reflexivity conditions for complex Lie groups
- S. S. Akbarov, Holomorphic duality for countable discrete groups
- Yu. Kuznetsova, “A duality for Moore groups”, J. Operator Theory, 69:2 (2013), 571–600
- С. С. Акбаров, “Непрерывные и гладкие оболочки топологических алгебр. Часть 1”, Функциональный анализ, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 129, ВИНИТИ РАН, М., 2017, 3–133
- С. С. Акбаров, “Непрерывные и гладкие оболочки топологических алгебр. Часть 2”, Функциональный анализ, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 130, ВИНИТИ РАН, М., 2017, 3–112
- S. S. Akbarov, On continuous duality for Moore groups
- K.-D. Bierstedt, “Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. I”, J. Reine Angew. Math., 1973:259 (1973), 186–210
- H. Jarchow, Locally convex spaces, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1981, 548 pp.
- А. Пич, Ядерные локально-выпкулые пространства, Мир, М., 1967, 266 с.
Supplementary files

