How many roots of a system of random Laurent polynomials are real?
- Authors: Kazarnovskii B.Y.1
-
Affiliations:
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
- Issue: Vol 213, No 4 (2022)
- Pages: 27-37
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133435
- DOI: https://doi.org/10.4213/sm9559
- ID: 133435
Cite item
Abstract
We say that a zero of a Laurent polynomial that lies on the unit circle with centre $0\in\mathbb C$ is real. We also say that a Laurent polynomial that is real on this circle is real. In contrast with ordinary polynomials, it is known that for random real Laurent polynomials of increasing degree the average proportion of real roots tends to $1/\sqrt 3$ rather than to $0$. We show that this phenomenon of the asymptotically nonvanishing proportion of real roots also holds for systems of Laurent polynomials of several variables. The corresponding asymptotic formula is obtained in terms of the mixed volumes of certain convex compact sets determining the growth of the system of polynomials. Bibliography: 11 titles.
About the authors
Boris Yakovlevich Kazarnovskii
Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
Email: kazbori@gmail.com
Candidate of physico-mathematical sciences, no status
References
- M. Kac, “On the average number of real roots of a random algebraic equation”, Bull. Amer. Math. Soc., 49:4 (1943), 314–320
- A. Edelman, E. Kostlan, “How many zeros of a random polynomial are real?”, Bull. Amer. Math. Soc. (N.S.), 32:1 (1995), 1–37
- J. Angst, F. Dalmao, G. Poly, “On the real zeros of random trigonometric polynomials with dependent coefficients”, Proc. Amer. Math. Soc., 147:1 (2019), 205–214
- П. Л. Чебышев, “Об интегрировании иррациональных дифференциалов”, Полное собрание сочинений, т. 2, Изд-во АН СССР, М., 1947, 52–70
- D. Akhiezer, B. Kazarnovskii, “Average number of zeros and mixed symplectic volume of Finsler sets”, Geom. Funct. Anal., 28:6 (2018), 1517–1547
- Д. Н. Запорожец, З. Каблучко, “Случайные определители, смешанные объемы эллипсоидов и нули гауссовских случайных полей”, Вероятность и статистика. 18, Посвящается юбилею Ильдара Абдулловича Ибрагимова, Зап. науч. сем. ПОМИ, 408, ПОМИ, СПб., 2012, 187–196
- Б. Я. Казарновский, “Среднее число решений систем уравнений”, Функц. анализ и его прил., 54:2 (2020), 35–47
- Д. Н. Бернштейн, “Число корней системы уравнений”, Функц. анализ и его прил., 9:3 (1975), 1–4
- В. И. Арнольд, Математические методы классической механики, 5-е изд., УРСС, М., 2003, 416 с.
- А. Д. Александров, “К теории смешанных объемов выпуклых тел. IV. Смешанные дискриминанты и смешанные объемы”, Матем. сб., 3(45):2 (1938), 227–251
- K. Kaveh, A. G. Khovanskii, “Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. of Math. (2), 176:2 (2012), 925–978
Supplementary files

