Values of the $\mathfrak{sl}_2$ weight system on a family of graphs that are not the intersection graphs of chord diagrams
- Authors: Zinova P.A.1
-
Affiliations:
- International Laboratory of Cluster Geometry, National Research University "Higher School of Economics" (HSE)
- Issue: Vol 213, No 2 (2022)
- Pages: 115-148
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133429
- DOI: https://doi.org/10.4213/sm9519
- ID: 133429
Cite item
Abstract
The Chmutov-Lando theorem claims that the value of a weight system (a function on the chord diagrams that satisfies the four-term Vassiliev relations) corresponding to the Lie algebra $\mathfrak{sl}_2$ depends only on the intersection graph of the chord diagram. We compute the values of the $\mathfrak{sl}_2$ weight system at the graphs in several infinite series, which are the joins of a graph with a small number of vertices and a discrete graph. In particular, we calculate these values for a series in which the initial graph is the cycle on five vertices; the graphs in this series, apart from the initial one, are not intersection graphs. We also derive a formula for the generating functions of the projections of graphs equal to the joins of an arbitrary graph and a discrete graph to the subspace of primitive elements of the Hopf algebra of graphs. Using the formula thus obtained, we calculate the values of the $\mathfrak{sl}_2$ weight system at projections of the graphs of the indicated form onto the subspace of primitive elements. Our calculations confirm Lando's conjecture concerning the values of the $\mathfrak{sl}_2$ weight system at projections onto the subspace of primitives. Bibliography: 17 titles.
About the authors
Polina Aleksandrovna Zinova
International Laboratory of Cluster Geometry, National Research University "Higher School of Economics" (HSE)without scientific degree, no status
References
- D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472
- A. Bigeni, “A generalization of the Kreweras triangle through the universal $mathfrak{sl}_2$ weight system”, J. Combin. Theory Ser. A, 161 (2019), 309–326
- A. Bouchet, “Circle graph obstructions”, J. Combin. Theory Ser. B, 60:1 (1994), 107–144
- S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.
- S. Chmutov, S. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598
- S. Chmutov, A. Varchenko, “Remarks on the Vassiliev knot invariants coming from $mathfrak{sl}_2$”, Topology, 36:1 (1997), 153–178
- П. A. Филиппова, “Значения весовой системы, отвечающей алгебре Ли $mathfrak{sl}_2$, на полных двудольных графах”, Функц. анализ и его прил., 54:3 (2020), 73–93
- S. A. Joni, G.-C. Rota, “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61:2 (1979), 93–139
- M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150
- E. Kulakova, S. Lando, T. Mukhutdinova, G. Rybnikov, “On a weight system conjecturally related to $mathfrak{sl}_2$”, European J. Combin., 41 (2014), 266–277
- S. K. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory Ser. B, 80:1 (2000), 104–121
- S. K. Lando, “On primitive elements in the bialgebra of chord diagrams”, Topics in singularity theory, v. 1, Amer. Math. Soc. Transl. Ser. 2, 180, Adv. Math. Sci., 34, Amer. Math. Soc., Providence, RI, 1997, 167–174
- А. К. Звонкин, С. К. Ландо, Графы на поверхностях и их приложения, МЦНМО, М., 2010, 480 с.
- S. Lando, V. Zhukov, “Delta-matroids and Vassiliev invariants”, Mosc. Math. J., 17:4 (2017), 741–755
- J. W. Milnor, J. C. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81:2 (1965), 211–264
- W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330
- V. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69
Supplementary files

