Values of the $\mathfrak{sl}_2$ weight system on a family of graphs that are not the intersection graphs of chord diagrams

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Chmutov-Lando theorem claims that the value of a weight system (a function on the chord diagrams that satisfies the four-term Vassiliev relations) corresponding to the Lie algebra $\mathfrak{sl}_2$ depends only on the intersection graph of the chord diagram. We compute the values of the $\mathfrak{sl}_2$ weight system at the graphs in several infinite series, which are the joins of a graph with a small number of vertices and a discrete graph. In particular, we calculate these values for a series in which the initial graph is the cycle on five vertices; the graphs in this series, apart from the initial one, are not intersection graphs. We also derive a formula for the generating functions of the projections of graphs equal to the joins of an arbitrary graph and a discrete graph to the subspace of primitive elements of the Hopf algebra of graphs. Using the formula thus obtained, we calculate the values of the $\mathfrak{sl}_2$ weight system at projections of the graphs of the indicated form onto the subspace of primitive elements. Our calculations confirm Lando's conjecture concerning the values of the $\mathfrak{sl}_2$ weight system at projections onto the subspace of primitives. Bibliography: 17 titles.

About the authors

Polina Aleksandrovna Zinova

International Laboratory of Cluster Geometry, National Research University "Higher School of Economics" (HSE)

without scientific degree, no status

References

  1. D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472
  2. A. Bigeni, “A generalization of the Kreweras triangle through the universal $mathfrak{sl}_2$ weight system”, J. Combin. Theory Ser. A, 161 (2019), 309–326
  3. A. Bouchet, “Circle graph obstructions”, J. Combin. Theory Ser. B, 60:1 (1994), 107–144
  4. S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.
  5. S. Chmutov, S. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598
  6. S. Chmutov, A. Varchenko, “Remarks on the Vassiliev knot invariants coming from $mathfrak{sl}_2$”, Topology, 36:1 (1997), 153–178
  7. П. A. Филиппова, “Значения весовой системы, отвечающей алгебре Ли $mathfrak{sl}_2$, на полных двудольных графах”, Функц. анализ и его прил., 54:3 (2020), 73–93
  8. S. A. Joni, G.-C. Rota, “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61:2 (1979), 93–139
  9. M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150
  10. E. Kulakova, S. Lando, T. Mukhutdinova, G. Rybnikov, “On a weight system conjecturally related to $mathfrak{sl}_2$”, European J. Combin., 41 (2014), 266–277
  11. S. K. Lando, “On a Hopf algebra in graph theory”, J. Combin. Theory Ser. B, 80:1 (2000), 104–121
  12. S. K. Lando, “On primitive elements in the bialgebra of chord diagrams”, Topics in singularity theory, v. 1, Amer. Math. Soc. Transl. Ser. 2, 180, Adv. Math. Sci., 34, Amer. Math. Soc., Providence, RI, 1997, 167–174
  13. А. К. Звонкин, С. К. Ландо, Графы на поверхностях и их приложения, МЦНМО, М., 2010, 480 с.
  14. S. Lando, V. Zhukov, “Delta-matroids and Vassiliev invariants”, Mosc. Math. J., 17:4 (2017), 741–755
  15. J. W. Milnor, J. C. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81:2 (1965), 211–264
  16. W. R. Schmitt, “Incidence Hopf algebras”, J. Pure Appl. Algebra, 96:3 (1994), 299–330
  17. V. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Zinova P.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).