On the cohomology rings of partially projective quaternionic Stiefel manifolds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The quaternionic Stiefel manifold $V_{n,k}(\mathbb H)$ is the total space of a fibre bundle over the corresponding Grassmannian $G_{n,k}(\mathbb H)$. The group $\operatorname{Sp}(1)=S^3$ acts freely on the fibres of this bundle. The quotient space is called the quaternionic projective Stiefel manifold. Its real and complex analogues were actively studied earlier by a number of authors. A finite group acting freely on the three-dimensional sphere also acts freely and discretely on the fibres of the quaternionic Stiefel bundle. The corresponding quotient spaces are called partially projective Stiefel manifolds.The cohomology rings of partially projective quaternionic Stiefel manifolds with coefficients in $\mathbb Z_p$, where $p$ is prime, are calculated.Bibliography: 14 titles.

About the authors

Georgy Evgen'evich Zhubanov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Fedor Yur'evich Popelenskii

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics

Candidate of physico-mathematical sciences, no status

References

  1. A. Borel, “Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts”, Ann. of Math. (2), 57 (1953), 115–207
  2. S. Gitler, D. Handel, “The projective Stiefel manifolds. I”, Topology, 7 (1968), 39–46
  3. A. Borel, “Sur l'homologie et la cohomologie des groupes de Lie compacts connexes”, Amer. J. Math., 76:2 (1954), 273–342
  4. P. F. Baum, W. Browder, “The cohomology of quotients of classical groups”, Topology, 3:4 (1965), 305–336
  5. L. Smith, “Some remarks on projective Stiefel manifolds, immersions of projective spaces and spheres”, Proc. Amer. Math. Soc., 80:4 (1980), 663–669
  6. L. Astey, S. Gitler, E. Micha, G. Pastor, “Cohomology of complex projective Stiefel manifolds”, Canad. J. Math., 51:5 (1999), 897–914
  7. S. S. Gondhali, Vector fields on certain quotients of the complex Stiefel manifolds, Ph.D. thesis, Tata Inst. Fund. Res., Mumbai, 2012, 47 pp.
  8. W. Threlfall, H. Seifert, “Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes (Schluss)”, Math. Ann., 107:1 (1933), 543–586
  9. H. Hopf, “Zum Clifford–Kleinschen Raumproblem”, Math. Ann., 95:1 (1926), 313–339
  10. W. S. Massey, F. P. Peterson, “The cohomology structure of certain fibre spaces. I”, Topology, 4 (1965), 47–65
  11. P. Orlik, Seifert manifolds, Lecture Notes in Math., 291, Springer-Verlag, Berlin–New York, 1972, viii+155 pp.
  12. J. Milnor, “Groups which act on $S^n$ without fixed points”, Amer. J. Math., 79:3 (1957), 623–630
  13. S. Tomoda, P. Zvengrowski, “Remarks on the cohomology of finite fundamental groups of 3-manifolds”, The Zieschang Gedenkschrift, Geom. Topol. Monogr., 14, Geom. Topol. Publ., Coventry, 2008, 519–556
  14. A. R. Shastri, P. Zvengrowski, “Type of 3-manifolds and addition of relativistic kinks”, Rev. Math. Phys., 3:4 (1991), 467–478

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Zhubanov G.E., Popelenskii F.Y.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».