On the cohomology rings of partially projective quaternionic Stiefel manifolds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The quaternionic Stiefel manifold $V_{n,k}(\mathbb H)$ is the total space of a fibre bundle over the corresponding Grassmannian $G_{n,k}(\mathbb H)$. The group $\operatorname{Sp}(1)=S^3$ acts freely on the fibres of this bundle. The quotient space is called the quaternionic projective Stiefel manifold. Its real and complex analogues were actively studied earlier by a number of authors. A finite group acting freely on the three-dimensional sphere also acts freely and discretely on the fibres of the quaternionic Stiefel bundle. The corresponding quotient spaces are called partially projective Stiefel manifolds.The cohomology rings of partially projective quaternionic Stiefel manifolds with coefficients in $\mathbb Z_p$, where $p$ is prime, are calculated.Bibliography: 14 titles.

About the authors

Georgy Evgen'evich Zhubanov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Fedor Yur'evich Popelenskii

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics

Candidate of physico-mathematical sciences, no status

References

  1. A. Borel, “Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts”, Ann. of Math. (2), 57 (1953), 115–207
  2. S. Gitler, D. Handel, “The projective Stiefel manifolds. I”, Topology, 7 (1968), 39–46
  3. A. Borel, “Sur l'homologie et la cohomologie des groupes de Lie compacts connexes”, Amer. J. Math., 76:2 (1954), 273–342
  4. P. F. Baum, W. Browder, “The cohomology of quotients of classical groups”, Topology, 3:4 (1965), 305–336
  5. L. Smith, “Some remarks on projective Stiefel manifolds, immersions of projective spaces and spheres”, Proc. Amer. Math. Soc., 80:4 (1980), 663–669
  6. L. Astey, S. Gitler, E. Micha, G. Pastor, “Cohomology of complex projective Stiefel manifolds”, Canad. J. Math., 51:5 (1999), 897–914
  7. S. S. Gondhali, Vector fields on certain quotients of the complex Stiefel manifolds, Ph.D. thesis, Tata Inst. Fund. Res., Mumbai, 2012, 47 pp.
  8. W. Threlfall, H. Seifert, “Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes (Schluss)”, Math. Ann., 107:1 (1933), 543–586
  9. H. Hopf, “Zum Clifford–Kleinschen Raumproblem”, Math. Ann., 95:1 (1926), 313–339
  10. W. S. Massey, F. P. Peterson, “The cohomology structure of certain fibre spaces. I”, Topology, 4 (1965), 47–65
  11. P. Orlik, Seifert manifolds, Lecture Notes in Math., 291, Springer-Verlag, Berlin–New York, 1972, viii+155 pp.
  12. J. Milnor, “Groups which act on $S^n$ without fixed points”, Amer. J. Math., 79:3 (1957), 623–630
  13. S. Tomoda, P. Zvengrowski, “Remarks on the cohomology of finite fundamental groups of 3-manifolds”, The Zieschang Gedenkschrift, Geom. Topol. Monogr., 14, Geom. Topol. Publ., Coventry, 2008, 519–556
  14. A. R. Shastri, P. Zvengrowski, “Type of 3-manifolds and addition of relativistic kinks”, Rev. Math. Phys., 3:4 (1991), 467–478

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Zhubanov G.E., Popelenskii F.Y.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).