More about sparse halves in triangle-free graphs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

One of Erdős's conjectures states that every triangle-free graph on $n$ vertices has an induced subgraph on $n/2$ vertices with at most $n^2/50$ edges. We report several partial results towards this conjecture. In particular, we establish the new bound $27n^2/1024$ on the number of edges in the general case. We completely prove the conjecture for graphs of girth $\geq 5$, for graphs with independence number $\geq 2n/5$ and for strongly regular graphs. Each of these three classes includes both known (conjectured) extremal configurations, the 5-cycle and the Petersen graph. Bibliography: 21 titles.

About the authors

Alexander Alexandrovich Razborov

University of Chicago; Steklov Mathematical Institute of Russian Academy of Sciences

Email: razborov@mi-ras.ru
Doctor of physico-mathematical sciences, no status

References

  1. J. Balogh, F. C. Clemen, B. Lidicky, Max cuts in triangle-free graphs
  2. N. Biggs, Strongly regular graphs with no triangles
  3. A. E. Brouwer, “The uniqueness of the strongly regular graph on 77 points”, J. Graph Theory, 7:4 (1983), 455–461
  4. F. R. K. Chung, R. L. Graham, R. M. Wilson, “Quasi-random graphs”, Combinatorica, 9:4 (1989), 345–362
  5. P. Erdős, R. Faudree, J. Pach, J. Spencer, “How to make a graph bipartite”, J. Combin. Theory Ser. B, 45:1 (1988), 86–98
  6. P. Erdős, R. J. Faudree, C. C. Rousseau, R. H. Schelp, “A local density condition for triangles”, Discrete Math., 127:1-3 (1994), 153–161
  7. P. Erdős, E. Győri, M. Simonovits, “How many edges should be deleted to make a triangle-free graph bipartite?”, Sets, graphs and numbers (Budapest, 1991), Colloq. Math. Soc. Janos Bolyai, 60, North-Holland, Amsterdam, 1992, 239–263
  8. P. Erdős, “Problems and results in graph theory and combinatorial analysis”, Proceedings of the 5th British combinatorial conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, 15, Utilitas Math., Winnipeg, MB, 1976, 169–192
  9. P. Erdős, “On some problems in graph theory, combinatorial analysis and combinatorial number theory”, Graph theory and combinatorics (Cambridge, 1983), Academic Press, London, 1984, 1–17
  10. P. Erdős, “Some old and new problems in various branches of combinatorics”, Discrete Math., 165/166 (1997), 227–231
  11. A. Gewirtz, “Graphs with maximal even girth”, Canadian J. Math., 21 (1969), 915–934
  12. A. Gewirtz, “The uniqueness of $g(2,2,10,56)$”, Trans. New York Acad. Sci., II Ser., 31:6 (1969), 656–675
  13. А. Л. Гаврилюк, А. А. Махнев, “О графах Крейна без треугольников”, Докл. РАН, 403:6 (2005), 727–730
  14. A. Grzesik, “On the maximum number of five-cycles in a triangle-free graph”, J. Combin. Theory Ser. B, 102:5 (2012), 1061–1066
  15. H. Hatami, J. Hladky, D. Kral, S. Norine, A. Razborov, “Non-three-colourable common graphs exist”, Combin. Probab. Comput., 21:5 (2012), 734–742
  16. H. Hatami, J. Hladky, D. Kral, S. Norine, A. Razborov, “On the number of pentagons in triangle-free graphs”, J. Combin. Theory Ser. A, 120:3 (2013), 722–732
  17. P. Kaski, P. Östergard, “There are exactly five biplanes with $k = 11$”, J. Combin. Des., 16:2 (2008), 117–127
  18. M. Krivelevich, “On the edge distribution in triangle-free graphs”, J. Combin. Theory Ser. B, 63:2 (1995), 245–260
  19. P. Keevash, B. Sudakov, “Sparse halves in triangle-free graphs”, J. Combin. Theory Ser. B, 96:4 (2006), 614–620
  20. S. Norin, L. Yepremyan, “Sparse halves in dense triangle-free graphs”, J. Combin. Theory Ser. B, 115 (2015), 1–25
  21. A. A. Razborov, “Flag algebras”, J. Symbolic Logic, 72:4 (2007), 1239–1282

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Razborov A.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).