The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides
- Authors: Nazarov S.A.1
-
Affiliations:
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
- Issue: Vol 212, No 7 (2021)
- Pages: 84-121
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133390
- DOI: https://doi.org/10.4213/sm9426
- ID: 133390
Cite item
Abstract
Threshold resonance arises on the lower bound of the continuous spectrum of a quantum waveguide (the Dirichlet problem for the Laplace operator), provided that for this value of the spectral parameter a nontrivial bounded solution exists which is either a trapped wave decaying at infinity or an almost standing wave stabilizing at infinity. In many problems in asymptotic analysis, it is important to be able to distinguish which of the waves initiates the threshold resonance; in this work we discuss several ways to clarify its properties. In addition, we demonstrate how the threshold resonance can be preserved by fine tuning the profile of the waveguide wall, and we obtain asymptotic expressions for the near-threshold eigenvalues appearing in the discrete or continuous spectrum when the threshold resonance is destroyed. Bibliography: 60 titles.
About the authors
Sergei Aleksandrovich Nazarov
Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
Email: srgnazarov@yahoo.co.uk
Doctor of physico-mathematical sciences, Professor
References
- S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559
- P. Exner, H. Kovar̆ik, Quantum waveguides, Theoret. Math. Phys., 22, Springer, Cham, 2015, xxii+382 pp.
- D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752
- С. А. Назаров, “Условия сопряжения в одномерной модели прямоугольной решетки тонких квантовых волноводов”, Проблемы матем. анализа, 87, Тамара Рожковская, Новосибирск, 2016, 153–173
- S. A. Nazarov, K. Ruotsalainen, P. Uusitalo, “Multifarious transmission conditions in the graph models of carbon nano-structures”, Mater. Phys. Mech., 29:2 (2016), 107–115
- С. А. Назаров, “Почти стоячие волны в периодическом волноводе с резонатором и околопороговые собственные числа”, Алгебра и анализ, 28:3 (2016), 111–160
- Н. А. Умов, Уравнения движения энергии в телах, Тип. Ульриха и Шульце, Одесса, 1874, 58 с.
- Л. И. Мандельштам, Лекции по оптике теории относительности и квантовой механике, Наука, М., 1972, 438 с.
- И. И. Ворович, В. А. Бабешко, Динамические смешанные задачи теории упругости для неклассических областей, Наука, М., 1979, 320 с.
- С. А. Назаров, Б. А. Пламеневский, Эллиптические задачи в областях с кусочно гладкой границей, Наука, М., 1991, 336 с.
- J. H. Poynting, “On the transfer of energy in the electromagnetic field”, Philos. Trans. R. Soc. Lond., 175 (1884), 343–361
- С. А. Назаров, “Лакуны и собственные частоты в спектре периодического акустического волновода”, Акустический журн., 59:3 (2013), 312–321
- С. А. Назаров, “Пороговые резонансы и виртуальные уровни в спектре цилиндрических и периодических волноводов”, Изв. РАН. Сер. матем., 84:6 (2020), 73–130
- С. А. Назаров, “Асимптотика собственных чисел на непрерывном спектре регулярно возмущенного квантового волновода”, ТМФ, 167:2 (2011), 239–263
- K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions”, J. Math. Anal. Appl., 449:1 (2017), 907–925
- Ф. Л. Бахарев, С. А. Назаров, “Критерии отсутствия и наличия ограниченных решений на пороге непрерывного спектра в объединении квантовых волноводов”, Алгебра и анализ, 32:6 (2020), 1–23
- С. А. Назаров, “Критерий существования затухающих решений в задаче о резонаторе с цилиндрическим волноводом”, Функц. анализ и его прил., 40:2 (2006), 20–32
- С. А. Назаров, “Ограниченные решения в $mathrm{T}$-образном волноводе и спектральные свойства лестницы Дирихле”, Ж. вычисл. матем. и матем. физ., 54:8 (2014), 1299–1318
- С. А. Назаров, “Спектр прямоугольных решеток квантовых волноводов”, Изв. РАН. Сер. матем., 81:1 (2017), 31–92
- С. А. Назаров, “Вариационный и асимптотический методы поиска собственных чисел под порогом непрерывного спектра”, Сиб. матем. журн., 51:5 (2010), 1086–1101
- B. Simon, “On the absorption of eigenvalues by continuous spectrum in regular perturbation problems”, J. Functional Analys, 25:4 (1977), 338–344
- B. Simon, “The bound state of weakly coupled Schrödinger operators in one and two dimensions”, Ann. Physics, 97:2 (1976), 279–288
- S. A. Nazarov, “Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness”, C. R. Mecanique, 330:9 (2002), 603–607
- C. А. Назаров, “Равномерные оценки остатков в асимптотических разложениях решений задачи о собственных колебаниях пьезоэлектрической пластины”, Проблемы матем. анализа, 25, Тамара Рожковская, Новосибирск, 2003, 99–188
- W. Bulla, F. Gesztesy, W. Renger, B. Simon, “Weakly coupled bound states in quantum waveguides”, Proc. Amer. Math. Soc., 125:5 (1997), 1487–1495
- М. Ш. Бирман, М. З. Соломяк, Спектральная теория самосопряженных операторов в гильбертовом пространстве, Изд-во Ленингр. ун-та, Л., 1980, 264 с.
- D. V. Evans, M. Levitin, D. Vassiliev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31
- D. S. Jones, “The eigenvalues of $nabla^2u+lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Cambridge Philos. Soc., 49:4 (1953), 668–684
- И. В. Камоцкий, С. А. Назаров, “Аномалии Вуда и поверхностные волны в задачах рассеяния на периодической границе. II”, Матем. сб., 190:2 (1999), 43–70
- С. А. Назаров, “Принудительная устойчивость простого собственного числа на непрерывном спектре волновода”, Функц. анализ и его прил., 47:3 (2013), 37–53
- М. И. Вишик, Л. А. Люстерник, “Регулярное вырождение и пограничный слой для линейных дифференциальных уравнений с малым параметром”, УМН, 12:5(77) (1957), 3–122
- С. А. Назаров, “Бесконечная пластина Кирхгофа на компактном упругом основании может иметь сколь угодно малое собственное число”, Докл. РАН, 488:4 (2019), 362–366
- С. А. Назаров, “Волны, захваченные полубесконечной пластиной Кирхгофа на ультранизких частотах”, ПММ, 84:3 (2020), 327–340
- С. А. Назаров, “Построение захваченной волны на низких частотах в упругом волноводе”, Функц. анализ и его прил., 54:1 (2020), 41–57
- S. A. Nazarov, K. M. Ruotsalainen, “Criteria for trapped modes in a cranked channel with fixed and freely floating bodies”, Z. Angew. Math. Phys., 65:5 (2014), 977–1002
- А.-С. Боннэ-Бен Диа, С. А. Назаров, “Препятствия в акустическом волноводе, становящиеся “невидимыми” на заданных частотах”, Акустический журн., 59:6 (2013), 685–692
- Л. Берс, Ф. Джон, М. Шехтер, Уравнения с частными производными, Мир, М., 1966, 351 с.
- A. I. Korolkov, S. A. Nazarov, A. V. Shanin, “Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves”, Z. Angew. Math. Mech., 96:10 (2016), 1245–1260
- А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, 4-е перераб. изд., Наука, М., 1976, 543 с.
- P. Duclos, P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102
- P. Exner, S. A. Vugalter, “Bound states in a locally deformed waveguide: the critical case”, Lett. Math. Phys., 39:1 (1997), 59–68
- D. Borisov, P. Exner, R. Gadyl'shin, D. Krejčiřik, “Bound states in weakly deformed strips and layers”, Ann. Henri Poincare, 2:3 (2001), 553–572
- В. В. Грушин, “О собственных значениях финитно возмущенного оператора Лапласа в бесконечных цилиндрических областях”, Матем. заметки, 75:3 (2004), 360–371
- Р. Р. Гадыльшин, “О локальных возмущениях квантовых волноводов”, ТМФ, 145:3 (2005), 358–371
- Д. И. Борисов, “Дискретный спектр пары несимметричных волноводов, соединенных окном”, Матем. сб., 197:4 (2006), 3–32
- D. Borisov, P. Exner, R. Gadyl'shin, “Geometric coupling thresholds in a two-dimensional strip”, J. Math. Phys., 43:12 (2002), 6265–6278
- М. Ван Дайк, Методы возмущений в механике жидкостей, Мир, М., 1967, 310 с.
- А. М. Ильин, Согласование асимптотических разложений решений краевых задач, Наука, М., 1989, 336 с.
- V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Oper. Theory Adv. Appl., 111, Birkhäuser Verlag, Basel, 2000, xxiv+435 pp.
- V. A. Kozlov, V. G. Maz'ya, A. B. Movchan, Asymptotic analysis of fields in multi-structures, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1999, xvi+282 pp.
- В. А. Кондратьев, “Краевые задачи для эллиптических уравнений в областях с коническими или угловыми точками”, Тр. ММО, 16, Изд-во Моск. ун-та, М., 1967, 209–292
- C. А. Назаров, Ю. А. Ромашев, “Изменение коэффициента интенсивности при разрушении перемычки между двумя коллинеарными трещинами”, Изв. АН АрмССР. Механика, 35:4 (1982), 30–40
- C. А. Назаров, “Асимптотические условия в точках, самосопряженные расширения операторов и метод сращиваемых асимптотических разложений”, Тр. С.-Петербург. матем. о-ва, 5, Изд-во С.-Петербург. ун-та, СПб., 1998, 112–183
- Р. Миттра, С. Ли, Аналитические методы теории волноводов, Мир, М., 1974, 328 с.
- C. H. Wilcox, Scattering theory for diffraction gratings, Appl. Math. Sci., 46, Springer-Verlag, New-York, 1984, ix+163 pp.
- V. Kozlov, “On the Hadamard formula for nonsmooth domains”, J. Differential Equations, 230:2 (2006), 532–555
- V. Kozlov, “Domain dependence of eigenvalues of elliptic type operators”, Math. Ann., 357:4 (2013), 1509–1539
- G. Cardone, T. Durante, S. A. Nazarov, “Water-waves modes trapped in a canal by a near-surface rough body”, ZAMM Z. Angew. Math. Mech., 90:12 (2010), 983–1004
- G. Cardone, T. Durante, S. A. Nazarov, “Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation”, J. Math. Pures Appl. (9), 112 (2018), 1–40
- С. А. Назаров, “Волновод с двойным пороговым резонансом на простом пороге”, Матем. сб., 211:8 (2020), 20–67
Supplementary files

