On $DA$-endomorphisms of the two-dimensional torus

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is proved that in each homotopy class of continuous mappings of the two-dimensional torus to itself that induce a hyperbolic action on the fundamental group, as long as it is free of expanding mappings, there exists an $A$-endomorphism $f$ whose nonwandering set consists of an attracting hyperbolic sink and a nontrivial one-dimensional collapsing repeller, which is a one-dimensional orientable lamination, locally homeomorphic to the direct product of a Cantor set and a line segment. Moreover, the unstable $Df$-invariant subbundle of the tangent space to the repeller has the property of uniqueness. Bibliography: 23 titles.

Sobre autores

Vyacheslav Grines

National Research University – Higher School of Economics in Nizhny Novgorod

Doctor of physico-mathematical sciences, Professor

Evgenii Zhuzhoma

National Research University – Higher School of Economics in Nizhny Novgorod

Email: zhuzhoma@mail.ru
Doctor of physico-mathematical sciences, Professor

Evgeny Kurenkov

National Research University – Higher School of Economics in Nizhny Novgorod

Email: ekurenkov@hse.ru

Bibliografia

  1. Д. В. Аносов, “Гладкие динамические системы. Гл. 1. Исходные понятия”, Динамические системы – 1, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 1, ВИНИТИ, М., 1985, 156–178
  2. Д. В. Аносов, Е. В. Жужома, “Нелокальное асимптотическое поведение кривых и слоев ламинаций на универсальных накрывающих”, Тр. МИАН, 249, Наука, М., 2005, 3–239
  3. S. Kh. Aranson, G. R. Belitsky, E. V. Zhuzhoma, Introduction to the qualitative theory of dynamical systems on surfaces, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996, xiv+325 pp.
  4. С. Х. Арансон, В. З. Гринес, “Топологическая классификация каскадов на замкнутых двумерных многообразиях”, УМН, 45:1(271) (1990), 3–32
  5. В. З. Гринес, “О топологической сопряженности диффеоморфизмов двумерного многообразия на одномерных ориентируемых базисных множествах I”, Тр. ММО, 32, Изд-во Моск. ун-та, М., 1975, 35–60
  6. В. З. Гринес, “О топологической сопряженности диффеоморфизмов двумерного многообразия на одномерных ориентируемых базисных множествах II”, Тр. ММО, 34, Изд-во Моск. ун-та, М., 1977, 243–252
  7. В. З. Гринес, Х. Х. Калай, “Диффеоморфизмы двумерных многообразий с просторно расположенными базисными множествами”, УМН, 40:1(241) (1985), 189–190
  8. V. Z. Grines, “Topological classification of one-dimensional attractors and repellers of $A$-diffeomorphisms of surfaces by means of automorphisms of fundamental groups of supports”, J. Math. Sci. (N.Y.), 95:5 (1999), 2523–2545
  9. В. З. Гринес, Е. В. Жужома, Е. Д. Куренков, “Хирургическая операция для эндоморфизма Аносова двумерного тора не дает растягивающийся аттрактор”, Динамические системы, 8(36):3 (2018), 235–244
  10. В. З. Гринес, О. В. Починка, Введение в топологическую классификацию диффеоморфизмов на многообразиях размерности два и три, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2011, 424 с.
  11. А. Ю. Жиров, “Гиперболические аттракторы диффеоморфизмов ориентируемых поверхностей”, Матем. сб., 185:6 (1994), 3–50
  12. Е. Д. Куренков, “О существовании эндоморфизма двумерного тора со строго инвариантным сжимающимся репеллером”, Журнал СВМО, 19:1 (2017), 60–66
  13. А. Майер, “О траекториях на ориентируемых поверхностях”, Матем. сб., 12(54):1 (1943), 71–84
  14. Р. В. Плыкин, “О геометрии гиперболических аттракторов гладких каскадов”, УМН, 39:6(240) (1984), 75–113
  15. А. Пуанкаре, О кривых, определяемых дифференциальными уравнениями, ГИТТЛ, М.–Л., 1947, 392 с.
  16. W. Hurewicz, “Über den sogenannten Produktsatz der Dimensionstheorie”, Math. Ann., 102:1 (1930), 305–312
  17. G. Ikegami, “Nondensity of $Omega$-stable endomorphisms and rough $Omega$-stabilities for endomorphisms”, Dynamical systems (Santiago, 1990), Pitman Res. Notes Math. Ser., 285, Longman Sci. Tech., Harlow, 1993, 52–91
  18. А. Б. Каток, Б. Хасселблат, Введение в современную теорию динамических систем, Факториал, М., 1999, 768 с.
  19. F. Przytycki, “Anosov endomorphisms”, Studia Math., 58:3 (1976), 249–285
  20. C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd corr. ed., CRC Press, Boca Raton, FL, 1999, xiv+506 pp.
  21. Л. П. Шильников, “Об одной задаче Пуанкаре–Биркгофа”, Матем. сб., 74(116):3 (1967), 378–397
  22. С. Смейл, “Дифференцируемые динамические системы”, УМН, 25:1(151) (1970), 113–185
  23. M. Shub, “Endomorphisms of compact differentiable manifolds”, Amer. J. Math., 91:1 (1969), 175–199

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Grines V.Z., Zhuzhoma E.V., Kurenkov E.D., 2021

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».