Proof of a conjecture of Wiegold for nilpotent Lie algebras
- Authors: Skutin A.A.1
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Issue: Vol 211, No 12 (2020)
- Pages: 143-148
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133370
- DOI: https://doi.org/10.4213/sm9350
- ID: 133370
Cite item
Abstract
Let $\mathfrak{g}$ be a nilpotent Lie algebra. By the breadth $b(x)$ of an element $x$ of $\mathfrak{g}$ we mean the number $[\mathfrak{g}:C_{\mathfrak{g}}(x)]$. Vaughan-Lee showed that if the breadth of all elements of the Lie algebra $\mathfrak{g}$ is bounded by a number $n$, then the dimension of the commutator subalgebra of the Lie algebra does not exceed $n(n+1)/2$. We show that if $\dim \mathfrak{g'} > n(n+1)/2$ for some nonnegative $n$, then the Lie algebra $\mathfrak{g}$ is generated by the elements of breadth $>n$, and thus we prove a conjecture due to Wiegold (Question 4.69 in the Kourovka Notebook) in the case of nilpotent Lie algebras. Bibliography: 4 titles.
About the authors
Alexander Andreevich Skutin
Lomonosov Moscow State University, Faculty of Mechanics and Mathematicswithout scientific degree, no status
References
- Коуровская тетрадь. Нерешенные вопросы теории групп, 18-е доп. изд., ред. В. Д. Мазуров, Е. И. Хухро, Ин-т матем. СО РАН, Новосибирск, 2014, 248 с.
- J. Wiegold, “Commutator subgroups of finite $p$-groups”, J. Austral. Math. Soc., 10:3-4 (1969), 480–484
- M. R. Vaughan-Lee, “Breadth and commutator subgroups of $p$-groups”, J. Algebra, 32:2 (1974), 278–285
- A. Skutin, “Proof of a conjecture of Wiegold”, J. Algebra, 526 (2019), 1–5
Supplementary files

