Vanishing properties of $f$-minimal hypersurfaces in a complete smooth metric measure space

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $(N^{n+1},g,e^{-f}dv)$ be a complete smooth metric measure space with $M^{n}$ being a complete noncompact $f$-minimal hypersurface in $N^{n+1}$. In this paper, we extend the classical vanishing theorems for $L^2$-harmonic $1$-forms on a complete minimal hypersurface to a weighted manifold. In addition, we obtain a vanishing result under the assumption that $M^n$ has sufficiently small weighted $L^n$-norm of the second fundamental form on $M^{n}$, which can be regarded as a generalization of a result by Yun and Seo. Bibliography: 26 titles.

About the authors

Rong Mi

Northwest Normal University

without scientific degree, no status

References

  1. D. Bakry, M. Emery, “Diffusions hypercontractives”, Seminaire de probabilites XIX 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206
  2. M. Batista, H. Mirandola, “Sobolev and isoperimetric inequalities for submanifolds in weighted ambient spaces”, Ann. Mat. Pura Appl. (4), 194:6 (2015), 1859–1872
  3. M. P. Cavalcante, H. Mirandola, F. Vitorio, “$L^{2}$-harmonic $1$-forms on submanifolds with finite total curvature”, J. Geom. Anal., 24:1 (2014), 205–222
  4. Huai-Dong Cao, Ying Shen, Shunhui Zhu, “The structure of stable minimal hypersurfaces in $mathbb{R}^{n+1}$”, Math. Res. Lett., 4:5 (1997), 637–644
  5. Xu Cheng, Tito Mejia, Detang Zhou, “Simons-type equation for $f$-minimal hypersurfaces and applications”, J. Geom. Anal., 25:4 (2015), 2667–2686
  6. Xu Cheng, Tito Mejia, Detang Zhou, “Stability and compactness for complete $f$-minimal surfaces”, Trans. Amer. Math. Soc., 367:6 (2015), 4041–4059
  7. M. do Carmo, C. K. Peng, “Stable complete minimal surfaces in $R^3$ are planes”, Bull. Amer. Math. Soc. (N.S.), 1:6 (1979), 903–906
  8. Nguyen Thac Dung, Keomkyo Seo, “Vanishing theorems for $L^{2}$ harmonic $1$-forms on complete submanifolds in a Riemanian manifold”, J. Math. Anal. Appl., 423:2 (2015), 1594–1609
  9. D. Impera, M. Rimoldi, “Stability properties and topology at infinity of $f$-minimal hypersurfaces”, Geom. Dedicata, 178 (2015), 21–47
  10. P. Li, R. Schoen, “$L^{p}$ and mean value properties of subharmonic functions on Riemannian manifolds”, Acta Math., 153:3-4 (1984), 279–301
  11. A. Lichnerowicz, “Varietes riemanniennes à tenseur $C$ non negatif”, C. R. Acad. Sci. Paris Ser. A-B, 271 (1970), A650–A653
  12. Gand Liu, “Stable weighted minimal surfaces in manifolds with non-negative Bakry–Emery Ricci tensor”, Comm. Anal. Geom., 21:5 (2013), 1061–1079
  13. J. Lott, C. Villani, “Ricci curvature for metric-measure spaces via optimal transport”, Ann. of Math. (2), 169:3 (2009), 903–991
  14. J. Lott, “Some geometric properties of the Bakry–Emery–Ricci tensor”, Comment. Math. Helv., 78:4 (2003), 865–883
  15. R. Miyaoka, “$L^2$ harmonic $1$-forms on a complete stable minimal hypersurface”, Geometry and global analysis (Sendai, 1993), Tohoku Univ., Sendai, 1993, 289–293
  16. F. Morgan, “Manifolds with density”, Notices Amer. Math. Soc., 52:8 (2005), 853–858
  17. Keomkyo Seo, “$L^{2}$ harmonic $1$-forms on minimal submanifolds in hyperbolic space”, J. Math. Anal. Appl., 371:2 (2010), 546–551
  18. Keomkyo Seo, “Rigidity of minimal submanifolds in hyperbolic space”, Arch. Math. (Basel), 94:2 (2010), 173–181
  19. Keomkyo Seo, “$L^{p}$ harmonic $1$-forms and first eigenvalue of a stable minimal hypersurface”, Pacific J. Math., 268:1 (2014), 205–229
  20. K.-T. Sturm, “On the geometry of metric measure spaces. I”, Acta. Math., 196:1 (2006), 65–131
  21. K.-T. Sturm, “On the geometry of metric measure spaces. II”, Acta. Math., 196:1 (2006), 133–177
  22. M. Vieira, “Harmonic forms on manifolds with non-negative Bakry–Emery–Ricci curvature”, Arch. Math. (Basel), 101:6 (2013), 581–590
  23. Guofang Wei, W. Wylie, “Comparison geometry for the Bakry–Emery–Ricci tensor”, J. Differential Geom., 83:2 (2009), 377–405
  24. Shing-Tung Yau, “Some function-theoretic properties of complete Riemannian manifold and their applications to geometry”, Indiana Univ. Math. J., 25:7 (1976), 659–670
  25. Gabjin Yun, “Total scalar curvature and $L^{2}$ harmonic $1$-forms on a minimal hypersuface in Euclidean space”, Geom. Dedicata, 89 (2002), 135–141
  26. Gabjin Yun, Keomkyo Seo, “Weighted volume growth and vanishing properties of $f$-minimal hypersurfaces in a weighted manifold”, Nonlinear Anal., 180 (2019), 264–283

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Mi R.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).