The Fermat-Steiner problem in the space of compact subsets of $\mathbb R^m$ endowed with the Hausdorff metric

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Fermat-Steiner problem consists in finding all points in a metric space $X$ at which the sum of the distances to fixed points $A_1,…,A_n$ of $X$ attains its minimum value. This problem is studied in the metric space $\mathscr{H}(\mathbb R^m)$ of all nonempty compact subsets of the Euclidean space $\mathbb R^m$, and the $A_i$ are pairwise disjoint finite sets in $\mathbb R^m$. The set of solutions of this problem (which are called Steiner compact sets) falls into different classes in accordance with the distances to the $A_i$. Each class contains an inclusion-greatest element and inclusion-minimal elements (a maximal Steiner compact set and minimal Steiner compact sets, respectively). We find a necessary and sufficient condition for a compact set to be a minimal Steiner compact set in a given class, provide an algorithm for constructing such compact sets and find a sharp estimate for their cardinalities. We also put forward a number of geometric properties of minimal and maximal compact sets. The results obtained can significantly facilitate the solution of specific problems, which is demonstrated by the well-known example of a symmetric set $\{A_1,A_2,A_3\}\subset\mathbb R^2$, for which all Steiner compact sets are asymmetric. The analysis of this case is significantly simplified due to the technique developed. Bibliography 16 titles.

About the authors

Arsen Khachaturovich Galstyan

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics

without scientific degree, no status

Alexandr Olegovich Ivanov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics; Bauman Moscow State Technical University

Email: aoiva@mech.math.msu.su
Doctor of physico-mathematical sciences, Professor

Alexey Avgustinovich Tuzhilin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics

Email: tuz@mech.math.msu.su
Doctor of physico-mathematical sciences, Professor

References

  1. A. O. Ivanov, A. A. Tuzhilin, Branching solutions to one-dimensional variational problems, World Sci. Publ., River Edge, NJ, 2001, xxii+342 pp.
  2. D. Cieslik, Steiner minimal trees, Nonconvex Optim. Appl., 23, Kluwer Acad. Publ., Dordrecht, 1998, xii+319 pp.
  3. A. O. Ivanov, A. A. Tuzhilin, “Minimal networks: a review”, Advances in dynamical systems and control, Stud. Syst. Decis. Control, 69, Springer, [Cham], 2016, 43–80
  4. V. Jarnik, M. Kössler, “O minimalnich grafech, obsahujicich $n$ danych bodů [On minimal graphs containing $n$ given points]”, Časopis Pěst. Mat. Fys., 63:8 (1934), 223–235
  5. Р. Курант, Г. Роббинс, Что такое математика? Элементарный очерк идей и методов, 3-е изд., испр. и доп., МЦНМО, М., 2001, 568 с.
  6. Z. Drezner, K. Klamroth, A. Schöbel, G. O. Wesolowsky, “The Weber problem”, Facility location: applications and theory, Springer, Berlin, 2002, 1–36
  7. A. Ivanov, A. Tropin, A. Tuzhilin, “Fermat–Steiner problem in the metric space of compact sets endowed with Hausdorff distance”, J. Geom., 108:2 (2017), 575–590
  8. S. Schlicker, The geometry of the Hausdorff metric, GVSU REU 2008, Grand Valley State Univ., Allendale, MI, 2008, 11 pp.
  9. Д. Ю. Бураго, Ю. Д. Бураго, С. В. Иванов, Курс метрической геометрии, Ин-т компьютерных исследований, М.–Ижевск, 2004, 512 с.
  10. C. C. Blackburn, K. Lund, S. Schlicker, P. Sigmon, A. Zupan, An introduction to the geometry of $mathscr{H}(mathbb R^n)$, GVSU REU 2007, Grand Valley State Univ., Allendale, MI, 2007
  11. F. Memoli, “On the use of Gromov–Hausdorff distances for shape comparison”, Eurographics symposium on point based graphics, The Eurographics Association, Prague, 2007, 81–90
  12. F. Memoli, “Some properties of Gromov–Hausdorff distances”, Discrete Comput. Geom., 48:2 (2012), 416–440
  13. A. O. Ivanov, A. A. Tuzhilin, “Isometry group of Gromov–Hausdorff space”, Mat. Vesnik, 71:1-2 (2019), 123–154
  14. В. А. Емеличев, О. И. Мельников, В. И. Сарванов, Р. И. Тышкевич, Лекции по теории графов, Наука, М., 1990, 384 с.
  15. А. О. Иванов, А. А. Тужилин, Геометрия расстояний Хаусдорфа и Громова–Хаусдорфа: случай компактов, Изд-во Попечительского совета мех.-матем. ф-та МГУ, М., 2017, 111 с.
  16. А. М. Тропин, Минимальные деревья Штейнера в пространстве с метрикой Хаусдорфа, Дипломная работа, Мех.-матем. ф-т МГУ, М., 2014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Galstyan A.K., Ivanov A.O., Tuzhilin A.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).