The Fermat-Steiner problem in the space of compact subsets of $\mathbb R^m$ endowed with the Hausdorff metric
- Authors: Galstyan A.K.1,2, Ivanov A.O.1,2,3, Tuzhilin A.A.1,2
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Moscow Center for Fundamental and Applied Mathematics
- Bauman Moscow State Technical University
- Issue: Vol 212, No 1 (2021)
- Pages: 28-62
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133368
- DOI: https://doi.org/10.4213/sm9343
- ID: 133368
Cite item
Abstract
About the authors
Arsen Khachaturovich Galstyan
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematicswithout scientific degree, no status
Alexandr Olegovich Ivanov
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics; Bauman Moscow State Technical University
Email: aoiva@mech.math.msu.su
Doctor of physico-mathematical sciences, Professor
Alexey Avgustinovich Tuzhilin
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics
Email: tuz@mech.math.msu.su
Doctor of physico-mathematical sciences, Professor
References
- A. O. Ivanov, A. A. Tuzhilin, Branching solutions to one-dimensional variational problems, World Sci. Publ., River Edge, NJ, 2001, xxii+342 pp.
- D. Cieslik, Steiner minimal trees, Nonconvex Optim. Appl., 23, Kluwer Acad. Publ., Dordrecht, 1998, xii+319 pp.
- A. O. Ivanov, A. A. Tuzhilin, “Minimal networks: a review”, Advances in dynamical systems and control, Stud. Syst. Decis. Control, 69, Springer, [Cham], 2016, 43–80
- V. Jarnik, M. Kössler, “O minimalnich grafech, obsahujicich $n$ danych bodů [On minimal graphs containing $n$ given points]”, Časopis Pěst. Mat. Fys., 63:8 (1934), 223–235
- Р. Курант, Г. Роббинс, Что такое математика? Элементарный очерк идей и методов, 3-е изд., испр. и доп., МЦНМО, М., 2001, 568 с.
- Z. Drezner, K. Klamroth, A. Schöbel, G. O. Wesolowsky, “The Weber problem”, Facility location: applications and theory, Springer, Berlin, 2002, 1–36
- A. Ivanov, A. Tropin, A. Tuzhilin, “Fermat–Steiner problem in the metric space of compact sets endowed with Hausdorff distance”, J. Geom., 108:2 (2017), 575–590
- S. Schlicker, The geometry of the Hausdorff metric, GVSU REU 2008, Grand Valley State Univ., Allendale, MI, 2008, 11 pp.
- Д. Ю. Бураго, Ю. Д. Бураго, С. В. Иванов, Курс метрической геометрии, Ин-т компьютерных исследований, М.–Ижевск, 2004, 512 с.
- C. C. Blackburn, K. Lund, S. Schlicker, P. Sigmon, A. Zupan, An introduction to the geometry of $mathscr{H}(mathbb R^n)$, GVSU REU 2007, Grand Valley State Univ., Allendale, MI, 2007
- F. Memoli, “On the use of Gromov–Hausdorff distances for shape comparison”, Eurographics symposium on point based graphics, The Eurographics Association, Prague, 2007, 81–90
- F. Memoli, “Some properties of Gromov–Hausdorff distances”, Discrete Comput. Geom., 48:2 (2012), 416–440
- A. O. Ivanov, A. A. Tuzhilin, “Isometry group of Gromov–Hausdorff space”, Mat. Vesnik, 71:1-2 (2019), 123–154
- В. А. Емеличев, О. И. Мельников, В. И. Сарванов, Р. И. Тышкевич, Лекции по теории графов, Наука, М., 1990, 384 с.
- А. О. Иванов, А. А. Тужилин, Геометрия расстояний Хаусдорфа и Громова–Хаусдорфа: случай компактов, Изд-во Попечительского совета мех.-матем. ф-та МГУ, М., 2017, 111 с.
- А. М. Тропин, Минимальные деревья Штейнера в пространстве с метрикой Хаусдорфа, Дипломная работа, Мех.-матем. ф-т МГУ, М., 2014
Supplementary files
