Limits, standard complexes and $\mathbf{fr}$-codes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For a strongly connected category $\mathscr{C}$ with pairwise coproducts, we introduce a cosimplicial object, which serves as a sort of resolution for computing higher derived functors of $\lim \colon \mathrm{Ab}^{\mathscr{C}}\to \mathrm{Ab}$. Applications involve the Künneth theorem for higher limits and $\lim$-finiteness of $\mathbf{fr}$-codes. A dictionary for the $\mathbf{fr}$-codes with words of length $\leq 3$ is given. Bibliography: 19 titles.

About the authors

Sergei Olegovich Ivanov

Laboratory of Modern Algebra and Applications, St. Petersburg State University

Email: ivanov.s.o.1986@gmail.com
Candidate of physico-mathematical sciences, no status

Roman Valerevich Mikhailov

Laboratory of Modern Algebra and Applications, St. Petersburg State University; St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Doctor of physico-mathematical sciences, Head Scientist Researcher

Fedor Yur'evich Pavutnitskiy

Laboratory of Modern Algebra and Applications, St. Petersburg State University

Email: fedor.pavutnitskiy@gmail.com

References

  1. S. A. Amitsur, “Simple algebras and cohomology groups of arbitrary fields”, Selected papers of S. A. Amitsur with commentary, v. 2, Collected Works, 16, Amer. Math. Soc., Providence, RI, 2001, 313–352
  2. S. Eilenberg, S. MacLane, “On the groups $H(Pi,n)$. II. Methods of computation”, Ann. of Math. (2), 60 (1954), 49–139
  3. P. G. Goerss, J. F. Jardine, Simplicial homotopy theory, Mod. Birkhäuser Class., Reprint of the 1999 original, Birkhäuser Verlag, Basel, 2009, xvi+510 pp.
  4. K. W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Math., 143, Springer-Verlag, Berlin–New York, 1970, xiv+275 pp.
  5. K. W. Gruenberg, “Resolutions by relations”, J. London Math. Soc., 35:4 (1960), 481–494
  6. S. O. Ivanov, R. Mikhailov, “A higher limit approach to homology theories”, J. Pure Appl. Algebra, 219:6 (2015), 1915–1939
  7. S. O. Ivanov, R. Mikhailov, “Higher limits, homology theories and $mathbf{fr}$-codes”, Combinatorial and toric homotopy, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Sci. Publ., Hackensack, NJ, 2018, 229–261
  8. С. О. Иванов, Р. В. Михайлов, В. А. Соснило, “Высшие копределы, производные функторы и когомологии”, Матем. сб., 210:9 (2019), 19–58
  9. R. Karan, D. Kumar, L. R. Vermani, “Some intersection theorems and subgroups determined by certain ideals in integral group rings. II”, Algebra Colloq., 9:2 (2002), 135–142
  10. С. Маклейн, Категории для работающего математика, Физматлит, М., 2004, 352 с.
  11. J.-P. Meyer, “Cosimplicial homotopies”, Proc. Amer. Math. Soc., 108:1 (1990), 9–17
  12. R. Mikhailov, I. B. S. Passi, “Generalized dimension subgroups and derived functors”, J. Pure Appl. Algebra, 220:6 (2016), 2143–2163
  13. R. Mikhailov, I. B. S. Passi, “Free group rings and derived functors”, European congress of mathematics, Eur. Math. Soc., Zürich, 2018, 407–425
  14. R. Mikhailov, I. B. S. Passi, “Dimension quotients, Fox subgroups and limits of functors”, Forum Math., 31:2 (2019), 385–401
  15. Т. И. Пирашвили, “Спектральная последовательность эпиморфизма. I”, Тр. Тбилис. матем. ин-та, 70, 1982, 69–91
  16. D. G. Quillen, Homotopical algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin–New York, 2006, iv+156 pp.
  17. A. Rosenberg, D. Zelinsky, “On Amitsur's complex”, Trans. Amer. Math. Soc., 97:2 (1960), 327–356
  18. D. Stevenson, “Decalage and Kan's simplicial loop group functor”, Theory Appl. Categ., 26:28 (2012), 768–787
  19. Ch. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math., 38, Cambridge Univ. Press, Cambridge, 1995, xiv+450 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Ivanov S.O., Mikhailov R.V., Pavutnitskiy F.Y.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).