Limits, standard complexes and $\mathbf{fr}$-codes
- Authors: Ivanov S.O.1, Mikhailov R.V.1,2, Pavutnitskiy F.Y.1
 - 
							Affiliations: 
							
- Laboratory of Modern Algebra and Applications, St. Petersburg State University
 - St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
 
 - Issue: Vol 211, No 11 (2020)
 - Pages: 72-95
 - Section: Articles
 - URL: https://journals.rcsi.science/0368-8666/article/view/133363
 - DOI: https://doi.org/10.4213/sm9348
 - ID: 133363
 
Cite item
Abstract
About the authors
Sergei Olegovich Ivanov
Laboratory of Modern Algebra and Applications, St. Petersburg State University
														Email: ivanov.s.o.1986@gmail.com
				                					                																			                								Candidate of physico-mathematical sciences, no status				                														
Roman Valerevich Mikhailov
Laboratory of Modern Algebra and Applications, St. Petersburg State University; St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of SciencesDoctor of physico-mathematical sciences, Head Scientist Researcher
Fedor Yur'evich Pavutnitskiy
Laboratory of Modern Algebra and Applications, St. Petersburg State University
														Email: fedor.pavutnitskiy@gmail.com
				                					                																			                												                														
References
- S. A. Amitsur, “Simple algebras and cohomology groups of arbitrary fields”, Selected papers of S. A. Amitsur with commentary, v. 2, Collected Works, 16, Amer. Math. Soc., Providence, RI, 2001, 313–352
 - S. Eilenberg, S. MacLane, “On the groups $H(Pi,n)$. II. Methods of computation”, Ann. of Math. (2), 60 (1954), 49–139
 - P. G. Goerss, J. F. Jardine, Simplicial homotopy theory, Mod. Birkhäuser Class., Reprint of the 1999 original, Birkhäuser Verlag, Basel, 2009, xvi+510 pp.
 - K. W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Math., 143, Springer-Verlag, Berlin–New York, 1970, xiv+275 pp.
 - K. W. Gruenberg, “Resolutions by relations”, J. London Math. Soc., 35:4 (1960), 481–494
 - S. O. Ivanov, R. Mikhailov, “A higher limit approach to homology theories”, J. Pure Appl. Algebra, 219:6 (2015), 1915–1939
 - S. O. Ivanov, R. Mikhailov, “Higher limits, homology theories and $mathbf{fr}$-codes”, Combinatorial and toric homotopy, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Sci. Publ., Hackensack, NJ, 2018, 229–261
 - С. О. Иванов, Р. В. Михайлов, В. А. Соснило, “Высшие копределы, производные функторы и когомологии”, Матем. сб., 210:9 (2019), 19–58
 - R. Karan, D. Kumar, L. R. Vermani, “Some intersection theorems and subgroups determined by certain ideals in integral group rings. II”, Algebra Colloq., 9:2 (2002), 135–142
 - С. Маклейн, Категории для работающего математика, Физматлит, М., 2004, 352 с.
 - J.-P. Meyer, “Cosimplicial homotopies”, Proc. Amer. Math. Soc., 108:1 (1990), 9–17
 - R. Mikhailov, I. B. S. Passi, “Generalized dimension subgroups and derived functors”, J. Pure Appl. Algebra, 220:6 (2016), 2143–2163
 - R. Mikhailov, I. B. S. Passi, “Free group rings and derived functors”, European congress of mathematics, Eur. Math. Soc., Zürich, 2018, 407–425
 - R. Mikhailov, I. B. S. Passi, “Dimension quotients, Fox subgroups and limits of functors”, Forum Math., 31:2 (2019), 385–401
 - Т. И. Пирашвили, “Спектральная последовательность эпиморфизма. I”, Тр. Тбилис. матем. ин-та, 70, 1982, 69–91
 - D. G. Quillen, Homotopical algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin–New York, 2006, iv+156 pp.
 - A. Rosenberg, D. Zelinsky, “On Amitsur's complex”, Trans. Amer. Math. Soc., 97:2 (1960), 327–356
 - D. Stevenson, “Decalage and Kan's simplicial loop group functor”, Theory Appl. Categ., 26:28 (2012), 768–787
 - Ch. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math., 38, Cambridge Univ. Press, Cambridge, 1995, xiv+450 pp.
 
Supplementary files
				
			
					
						
						
						
						
				

