Operator $E$-norms and their use

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider a family of equivalent norms (called operator $E$-norms) on the algebra $\mathfrak B(\mathscr H)$ of all bounded operators on a separable Hilbert space $\mathscr H$ induced by a positive densely defined operator $G$ on $\mathscr H$. By choosing different generating operators $G$ we can obtain the operator $E$-norms producing different topologies, in particular,the strong operator topology on bounded subsets of $\mathfrak B(\mathscr H)$.We obtain a generalised version of the Kretschmann-Schlingemann-Werner theorem, which shows that the Stinespring representation of completely positive linear maps is continuous with respect to the energy-constrained norm of complete boundedness on the set of completely positive linear maps and the operator $E$-norm on the set of Stinespring operators.The operator $E$-norms induced by a positive operator $G$ are well defined for linear operators relatively bounded with respect to the operator $\sqrt G$, and the linear space of such operators equipped with any of these norms is a Banach space. We obtain explicit relations between operator $E$-norms and the standard characteristics of $\sqrt G$-bounded operators. Operator $E$-norms allow us to obtain simple upper bounds and continuity bounds for some functions depending on $\sqrt G$-bounded operators used in applications.Bibliography: 29 titles.

About the authors

Maksim Evgenievich Shirokov

Steklov Mathematical Institute of Russian Academy of Sciences

Email: msh@mi-ras.ru
Doctor of physico-mathematical sciences, Head Scientist Researcher

References

  1. У. Браттели, Д. Робинсон, Операторные алгебры и квантовая статистическая механика, Мир, М., 1982, 512 с.
  2. V. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2002, xii+300 pp.
  3. М. Рид, Б. Саймон, Методы современной математической физики, т. 1, Функциональный анализ, Мир, М., 1977, 357 с.
  4. А. С. Холево, Квантовые системы, каналы, информация, МЦНМО, М., 2010, 328 с.
  5. J. Watrous, The theory of quantum information, Cambridge Univ. Press, Cambridge, 2018, viii+590 pp.
  6. M. M. Wilde, Quantum information theory, Cambridge Univ. Press, Cambridge, 2013
  7. А. Я. Хелемский, Лекции по функциональному анализу, МЦНМО, М., 2004, 552 с.
  8. M. E. Shirokov, “Strong convergence of quantum channels: continuity of the Stinespring dilation and discontinuity of the unitary dilation”, J. Math. Phys. (to appear)
  9. M. E. Shirokov, “On extension of quantum channels and operations to the space of relatively bounded operators”, Lobachevskii J. Math., 41:4 (2020), 714–727
  10. M. E. Shirokov, A. S. Holevo, “Energy-constrained diamond norms and quantum dynamical semigroups”, Lobachevskii J. Math., 40:10 (2019), 1569–1586
  11. D. Kretschmann, D. Schlingemann, R. F. Werner, “A continuity theorem for Stinespring's dilation”, J. Funct. Anal., 255:8 (2008), 1889–1904
  12. A. Winter, Energy-constrained diamond norms with applications to the uniform continuity of continuous variable channel capacities
  13. А. С. Холево, “Классические пропускные способности квантового канала с ограничением на входе”, Теория вероятн. и ее примен., 48:2 (2003), 359–374
  14. A. Winter, “Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints”, Comm. Math. Phys., 347:1 (2016), 291–313
  15. С. В. Вейс, М. Е. Широков, “О крайних точках множества состояний с ограниченной энергией”, УМН (в печати)
  16. W. F. Stinespring, “Positive functions on $C^*$-algebras”, Proc. Amer. Math. Soc., 6:2 (1955), 211–216
  17. V. P. Belavkin, G. M. D'Ariano, M. Raginsky, “Operational distance and fidelity for quantum channels”, J. Math. Phys., 46:6 (2005), 062106, 23 pp.
  18. D. Aharonov, A. Kitaev, N. Nisan, “Quantum circuits with mixed states”, STOC' 98. Proceedings of the 30th annual ACM symposium on theory of computing (Dallas, TX, 1998), ACM, New York, 1999, 20–30
  19. М. Е. Широков, “О норме полной ограниченности с энергетическим ограничением и ее использовании в квантовой теории информации”, Пробл. передачи информ., 54:1 (2018), 24–38
  20. S. Pirandola, R. Laurenza, C. Ottaviani, L. Banchi, “Fundamental limits of repeaterless quantum communications”, Nat. Commun., 8 (2017), 15043
  21. M. E. Shirokov, “Uniform continuity bounds for information characteristics of quantum channels depending on input dimension and on input energy”, J. Phys. A, 52:1 (2019), 014001, 31 pp.
  22. R. Nair, “Quantum-limited loss sensing: Multiparameter estimation and Bures distance between loss channels”, Phys. Rev. Lett., 121 (2018), 230801
  23. S. Simons, Minimax and monotonicity, Lecture Notes in Math., 1693, Springer-Verlag, Berlin, 1998, xii+172 pp.
  24. A. Uhlmann, “The “transition probability” in the state space of a $*$-algebra”, Rep. Math. Phys., 9:2 (1976), 273–279
  25. Т. Като, Теория возмущений линейных операторов, Мир, М., 1972, 740 с.
  26. I. Bengtsson, K. Życzkowski, Geometry of quantum states. An introduction to quantum entanglement, 2nd ed., Cambridge Univ. Press, Cambridge, 2017, xv+619 pp.
  27. М. Рид, Б. Саймон, Методы современной математической физики, т. 2, Гармонический анализ. Самосопряженность, Мир, М., 1978, 395 с.
  28. B. Simon, Operator theory, Compr. Course Anal., 4, Amer. Math. Soc., Providence, RI, 2015, xviii+749 pp.
  29. В. Ю. Протасов, М. Е. Широков, “О взаимно обратных преобразованиях функций на полупрямой”, Докл. РАН, 489:5 (2019), 452–455

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Shirokov M.E.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).