Bounded automorphism groups of compact complex surfaces

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We classify compact complex surfaces whose groups of bimeromorphic selfmaps have bounded finite subgroups. We also prove that the stabilizer of a point in the automorphism group of a compact complex surface of zero Kodaira dimension, as well as the stabilizer of a point in the automorphism group of an arbitrary compact Kähler manifold of nonnegative Kodaira dimension, always has bounded finite subgroups. Bibliography: 23 titles.

About the authors

Yuri Gennadievich Prokhorov

Steklov Mathematical Institute of Russian Academy of Sciences

Email: prokhoro@mi-ras.ru
Doctor of physico-mathematical sciences, Professor

Constantin Aleksandrovich Shramov

Steklov Mathematical Institute of Russian Academy of Sciences

Email: costya.shramov@gmail.com
Doctor of physico-mathematical sciences, no status

References

  1. D. N. Akhiezer, Lie group actions in complex analysis, Aspects Math., E27, Friedr. Vieweg & Sohn, Braunschweig, 1995, viii+201 pp.
  2. C. Bennett, R. Miranda, “The automorphism groups of the hyperelliptic surfaces”, Rocky Mountain J. Math., 20:1 (1990), 31–37
  3. C. Birkar, Singularities of linear systems and boundedness of Fano varieties, 2016
  4. W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp.
  5. A. Fujiki, “On automorphism groups of compact Kähler manifolds”, Invent. Math., 44:3 (1978), 225–258
  6. D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math., 158, Cambridge Univ. Press, Cambridge, 2016, xi+485 pp.
  7. Jin Hong Kim, “Jordan property and automorphism groups of normal compact Kähler varieties”, Commun. Contemp. Math., 20:3 (2018), 1750024, 9 pp.
  8. K. Kodaira, “On compact analytic surfaces. II”, Ann. of Math. (2), 77:3 (1963), 563–626
  9. J. Kollar, “The structure of algebraic threefolds: an introduction to Mori's program”, Bull. Amer. Math. Soc. (N.S.), 17:2 (1987), 211–273
  10. R. Miranda, The basic theory of elliptic surfaces, Notes of lectures, Dottorato Ric. Mat., ETS Editrice, Pisa, 1989, vi+108 pp.
  11. Sh. Mukai, Yu. Namikawa, “Automorphisms of Enriques surfaces which act trivially on the cohomology groups”, Invent. Math., 77:3 (1984), 383–397
  12. Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072
  13. Yu. Prokhorov, C. Shramov, “Automorphism groups of compact complex surfaces”, Int. Math. Res. Not. IMRN, Publ. online: 2019, rnz124, 22 pp.
  14. Yu. Prokhorov, C. Shramov, “Finite groups of birational selfmaps of threefolds”, Math. Res. Lett., 25:3 (2018), 957–972
  15. J. Sawon, Isotrivial elliptic $K3$ surfaces and Lagrangian fibrations, 2014
  16. J.-P. Serre, “Bounds for the orders of the finite subgroups of $G(k)$”, Group representation theory, EPFL Press, Lausanne, 2007, 405–450
  17. C. Shramov, “Finite groups acting on elliptic surfaces”, Eur. J. Math., Publ. online: 2019, 12 pp.
  18. C. Shramov, V. Vologodsky, Automorphisms of pointless surfaces, 2018
  19. K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Notes written in collaboration with P. Cherenack, Lecture Notes in Math., 439, Springer-Verlag, Berlin–New York, 1975, xix+278 pp.
  20. В. В. Никулин, “Классификация решеток Пикара К3-поверхностей”, Изв. РАН. Сер. матем., 82:4 (2018), 115–177
  21. M. Maruyama, “On automorphism groups of ruled surfaces”, J. Math. Kyoto Univ., 11 (1971), 89–112
  22. В. В. Пржиялковский, И. А. Чельцов, К. А. Шрамов, “Трехмерные многообразия Фано с бесконечными группами автоморфизмов”, Изв. РАН. Сер. матем., 83:4 (2019), 226–280
  23. А. В. Пухликов, “Автоморфизмы некоторых аффинных дополнений в проективном пространстве”, Матем. сб., 209:2 (2018), 138–152

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Prokhorov Y.G., Shramov C.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).