Etale monodromy and rational equivalence for $1$-cycles on cubic hypersurfaces in $\mathbb P^5$

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $k$ be an uncountable algebraically closed field of characteristic $0$, and let $X$ be a smooth projective connected variety of dimension $2p$, embedded into $\mathbb P^m$ over $k$. Let $Y$ be a hyperplane section of $X$, and let $A^p(Y)$ and $A^{p+1}(X)$ be the groups of algebraically trivial algebraic cycles of codimension $p$ and $p+1$ modulo rational equivalence on $Y$ and $X$, respectively. Assume that, whenever $Y$ is smooth, the group $A^p(Y)$ is regularly parametrized by an abelian variety $A$ and coincides with the subgroup of degree $0$ classes in the Chow group $\operatorname{CH}^p(Y)$. We prove that the kernel of the push-forward homomorphism from $A^p(Y)$ to $A^{p+1}(X)$ is the union of a countable collection of shifts of a certain abelian subvariety $A_0$ inside $A$. For a very general hyperplane section $Y$ either $A_0=0$ or $A_0$ coincides with an abelian subvariety $A_1$ in $A$ whose tangent space is the group of vanishing cycles $H^{2p-1}(Y)_\mathrm{van}$. Then we apply these general results to sections of a smooth cubic fourfold in $\mathbb P^5$. Bibliography: 33 titles.

About the authors

Kalyan Banerjee

Harish-Chandra Research Institute

Email: banerjeekalyan@hri.res.in
PhD, Researcher

Vladimir Igorevich Guletskii

Department of Mathematical Sciences, University of Liverpool

Email: vladimir.guletskii@liverpool.ac.uk
Candidate of physico-mathematical sciences, no status

References

  1. A. Beauville, “Varietes de Prym et jacobiennes intermediaires”, Ann. Sci. Ecole Norm. Sup. (4), 10:3 (1977), 309–391
  2. S. Bloch, “An example in the theory of algebraic cycles”, Algebraic K-theory (Northwestern Univ., Evanston, IL, 1976), Lecture Notes in Math., 551, Springer, Berlin, 1976, 1–29
  3. S. Bloch, “Torsion algebraic cycles and a theorem of Roitman”, Compositio Math., 39:1 (1979), 107–127
  4. S. Bloch, J. P. Murre, “On the Chow group of certain types of Fano threefolds”, Compositio Math., 39:1 (1979), 47–105
  5. J.-L. Colliot-Thelène, J.-J. Sansuc, C. Soule, “Torsion dans le groupe de Chow de codimension deux”, Duke Math. J., 50:3 (1983), 763–801
  6. O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001, xiv+233 pp.
  7. P. Deligne, “La conjecture de Weil. I”, Inst. Hautes Etudes Sci. Publ. Math., 43 (1974), 273–307
  8. P. Deligne, “La conjecture de Weil. II”, Inst. Hautes Etudes Sci. Publ. Math., 52 (1980), 137–252
  9. G. Faltings, “Complements to Mordell”, Rational points (Bonn, 1983/1984), Aspects Math., E6, Friedr. Viehweg, Braunschweig, 1984, 203–227
  10. E. Freitag, R. Kiehl, Etale cohomology and the Weil conjecture, transl. from the German, with an historical introduction by J. A. Dieudonne, Ergeb. Math. Grenzgeb. (3), 13, Springer-Verlag, Berlin, 1988, xviii+317 pp.
  11. S. Gorchinskiy, V. Guletskiĭ, “Motives and representability of algebraic cycles on threefolds over a field”, J. Algebraic Geom., 21:2 (2012), 347–373
  12. P. Deligne, N. Katz, Groupes de monodromie en geometrie algebrique, Seminaire de geometrie algebrique du Bois-Marie 1967–1969 (SGA 7 II), v. II, Lecture Notes in Math., 340, Springer-Verlag, Berlin–New York, 1973, x+438 pp.
  13. J. Kollar, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1996, viii+320 pp.
  14. K. Lamotke, “The topology of complex projective varieties after S. Lefschetz”, Topology, 20:1 (1981), 15–51
  15. А. С. Меркурьев, А. А. Суслин, “$K$-когомологии многообразий Севери–Брауэра и гомоморфизм норменного вычета”, Изв. АН СССР. Сер. матем., 46:5 (1982), 1011–1046
  16. Д. Мамфорд, “Рациональная эквивалентность нульмерных циклов на поверхности”, Математика. Сб. пер., 16, № 2, Мир, М., 1972, 3–10
  17. J. P. Murre, “Un resultat en theorie des cycles algebriques de codimension deux”, C. R. Acad. Sci. Paris Ser. I Math., 296:23 (1983), 981–984
  18. А. A. Ройтман, “$Gamma $-эквивалентность нульмерных циклов”, Матем. сб., 86(128):4(12) (1971), 557–570
  19. A. A. Rojtman, “The torsion of the group of $0$-cycles modulo rational equivalence”, Ann. of Math. (2), 111:3 (1980), 553–569
  20. C. Schoen, “On Hodge structures and non-representability of Chow groups”, Compositio Math., 88:3 (1993), 285–316
  21. S. S. Shatz, “Group schemes, formal groups, and $p$-divisible groups”, Arithemtic geometry (Storrs, CT, 1984), Springer, New York, 1986, 29–78
  22. Mingmin Shen, Surfaces with involution and Prym constructions
  23. Mingmin Shen, “On relations among $1$-cycles on cubic hypersurfaces”, J. Algebraic Geom., 23:3 (2014), 539–569
  24. A. Suslin, V. Voevodsky, “Relative cycles and Chow sheaves”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 10–86
  25. J. Tate, “Conjectures on algebraic cycles in $l$-adic cohomology”, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, Part I, Amer. Math. Soc., Providence, RI, 1994, 71–83
  26. C. Vial, “Algebraic cycles and fibrations”, Doc. Math., 18 (2013), 1521–1553
  27. C. Voisin, “Theorème de Torelli pour les cubiques de $mathbb P^5$”, Invent. Math., 86:3 (1986), 577–601
  28. C. Voisin, “Sur les zero-cycles de certaines hypersurfaces munies d'un automorphisme”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19:4 (1992), 473–492
  29. C. Voisin, “Variations de structure de Hodge et zero-cycles sur les surfaces generales”, Math. Ann., 299:1 (1994), 77–103
  30. C. Voisin, Hodge theory and complex algebraic geometry, transl. from the French, v. I, Cambridge Stud. Adv. Math., 76, Cambridge Univ. Press, Cambridge, 2002, x+322 pp.
  31. C. Voisin, “Symplectic involutions of $K3$-surfaces act trivially on $mathrm{CH}_0$”, Doc. Math., 17 (2012), 851–860
  32. C. Voisin, “The generalized Hodge and Bloch conjectures are equivalent for general complete intersections”, Ann. Sci. Ec. Norm. Super. (4), 46:3 (2013), 449–475
  33. C. Voisin, “On the universal $mathrm{CH}_0$ of cubic hypersurfaces”, J. Eur. Math. Soc. (JEMS), 19:6 (2017), 1619–1653

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Banerjee K., Guletskii V.I.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).