Sufficient conditions for the stability of linear periodic impulsive differential equations
- Authors: Bivziuk V.O.1, Slyn'ko V.I.2,3
-
Affiliations:
- University of Illinois at Urbana-Champaign
- Institute of Mechanics named after S. P. Timoshenko of National Academy of Sciences of Ukraine
- Julius-Maximilians-Universität Würzburg
- Issue: Vol 210, No 11 (2019)
- Pages: 3-23
- Section: Articles
- URL: https://journals.rcsi.science/0368-8666/article/view/133291
- DOI: https://doi.org/10.4213/sm9154
- ID: 133291
Cite item
Abstract
About the authors
Vladyslav Olegovich Bivziuk
University of Illinois at Urbana-Champaign
Vitalii Ivanovich Slyn'ko
Institute of Mechanics named after S. P. Timoshenko of National Academy of Sciences of Ukraine; Julius-Maximilians-Universität Würzburg
Email: vitstab@ukr.net
Doctor of physico-mathematical sciences, Head Scientist Researcher
References
- C. Briat, A. Seuret, “A looped-functional approach for robust stability analysis of linear impulsive systems”, Systems Control Lett., 61:10 (2012), 980–988
- C. Briat, “Dwell-time stability and stabilization conditions for linear positive impulsive and switched systems”, Nonlinear Anal. Hybrid Syst., 24 (2017), 198–226
- А. И. Двирный, В. И. Слынько, “Применение прямого метода Ляпунова к исследованию устойчивости решений систем дифференциальных уравнений с импульсным воздействием”, Матем. заметки, 96:1 (2014), 22–35
- V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, Ser. Modern Appl. Math., 6, World Sci. Publ., Teaneck, NJ, 1989, xii+273 pp.
- А. М. Самойленко, Н. А. Перестюк, Дифференциальные уравнения с импульсным воздействием, Вища школа, Киев, 1987, 288 с.
- Xinzhi Liu, A. Willms, “Stability analysis and applications to large scale impulsive systems: a new approach”, Canad. Appl. Math. Quart., 3:4 (1995), 419–444
- A. O. Ignatyev, “On the stability of invariant sets of systems with impulse effect”, Nonlinear Anal., 69:1 (2008), 53–72
- А. И. Двирный, В. И. Слынько, “Об устойчивости по нелинейному квазиоднородному приближению дифференциальных уравнений с импульсным воздействием”, Матем. сб., 205:6 (2014), 109–138
- C. Briat, “Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints”, Automatica, 49:11 (2013), 3449–3457
- В. И. Слынько, “Об условиях устойчивости линейных импульсных систем с запаздыванием”, Прикл. мех., 41:6 (2005), 130–138
- V. I. Slyn'ko, O. Tunç, V. O. Bivziuk, “Application of commutator calculus to the study of linear impulsive systems”, Systems Control Lett., 123 (2019), 160–165
- D. Chatterjee, D. Liberzon, “Stability analysis of deterministic and stochastic switched systems via a comparison principle and multiple Lyapunov functions”, SIAM J. Control Optim., 45:1 (2006), 174–206
- Jianquan Lua, D. W. C. Ho, Jinde Cao, “A unified synchronization criterion for impulsive dynamical networks”, Automatica, 46:7 (2010), 1215–1221
- Xiaodi Li, Peng Li, Qing-guo Wang, “Input/output-to-state stability of impulsive switched systems”, Systems Control Lett., 116 (2018), 1–7
- S. Dashkovskiy, A. Mironchenko, “Input-to-state stability of nonlinear impulsive systems”, SIAM J. Control Optim., 51:3 (2013), 1962–1987
- M. A. Müller, D. Liberzon, “Input/output-to-state stability and state-norm estimators for switched nonlinear systems”, Automatica, 48:9 (2012), 2029–2039
- Ticao Jiao, Wei Xing Zheng, Shengyuan Xu, “Stability analysis for a class of random nonlinear impulsive systems”, Internat. J. Robust Nonlinear Control, 27:7 (2017), 1171–1193
- W. Magnus, “On the exponential solution of differential equations for a linear operator”, Comm. Pure Appl. Math., 7 (1954), 649–673
- A. A. Agrachev, D. Liberzon, “Lie-algebraic stability criteria for switched systems”, SIAM J. Control Optim., 40:1 (2001), 253–269
- A. A. Agrachev, Yu. Baryshnikov, D. Liberzon, “On robust Lie-algebraic stability conditions for switched linear systems”, Systems Control Lett., 61:2 (2012), 347–353
- С. А. Кутепов, “Абсолютная устойчивость билинейных систем с компактным фактором Леви”, Кибернетика и вычислительная техника, 62 (1984), 28–33
- D. Liberzon, J. P. Hespanha, A. S. Morse, “Stability of switched systems: a Lie-algebraic condition”, Systems Control Lett., 37:3 (1999), 117–122
- V. Slyn'ko, C. Tunç, “Stability of abstract linear switched impulsive differential equations”, Automatica, 107 (2019), 433–441
- Ю. Л. Далецкий, М. Г. Крейн, Устойчивость решений дифференциальных уравнений в банаховом пространстве, Наука, М., 1970, 534 с.
Supplementary files
