Local existence conditions for sweeping process solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A sufficient condition for the existence of an absolutely continuous solution for a sweeping process is given by the absolute continuity, in a definite sense, of the multivalued mapping which generates the process. This property is described in terms of the Hausdorff distance between values of the multivalued mapping. However, there exist multivalued mappings for which the Hausdorff distance between those values is infinite; for instance, mappings which take hyperplanes as values. For such mappings absolute continuity cannot be described in terms of the Hausdorff distance. In this paper we study conditions which provide local absolute continuity of a multivalued mapping. By using these conditions we prove an existence theorem for an absolutely continuous solution of a sweeping process. We apply the results obtained to the study of sweeping processes with nonconvex and with convexified perturbations. For such sweeping processes we prove an existence theorem for solutions and a relaxation theorem. Bibliography: 13 titles.

About the authors

Alexander Alexandrovich Tolstonogov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences

Email: aatol@icc.ru
Doctor of physico-mathematical sciences, Professor

References

  1. J.-P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viability theory, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984, xiii+342 pp.
  2. J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374
  3. A. A. Tolstonogov, “Sweeping process with unbounded nonconvex perturbation”, Nonlinear Anal., 108 (2014), 291–301
  4. C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72
  5. H. Attouch, R. J.-B. Wets, “Quantitative stability of variational systems. I. The epigraphical distance”, Trans. Amer. Math. Soc., 328:2 (1991), 695–729
  6. A. A. Tolstonogov, “Relaxation in nonconvex optimal control problems containing the difference of two subdifferentials”, SIAM J. Control Optim., 54:1 (2016), 175–197
  7. И. Экланд, Р. Темам, Выпуклый анализ и вариационные проблемы, Мир, М., 1979, 399 с.
  8. A. A. Tolstonogov, “Existence and relaxation of solutions for a subdifferential inclusion with unbounded perturbation”, J. Math. Anal. Appl., 447:1 (2017), 269–288
  9. H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, Notas Mat. (50), North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1973, vi+183 pp.
  10. M. D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction, Progr. Nonlinear Differential Equations Appl., 9, Burkhäuser Verlag, Basel, 1993, x+179 pp.
  11. F. Hiai, H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182
  12. A. A. Tolstonogov, D. A. Tolstonogov, “$L_p$-continuous extreme selectors of multifunctions with decomposable values: relaxation theorems”, Set-Valued Anal., 4:3 (1996), 237–269
  13. А. Ф. Филиппов, “Классические решения дифференциальных уравнений с многозначной правой частью”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1967, № 3, 16–26

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Tolstonogov A.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).