Naturally graded Lie algebras of slow growth

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A pro-nilpotent Lie algebra $\mathfrak g$ is said to be naturally graded if it is isomorphic to its associated graded Lie algebra $\operatorname{gr}\mathfrak g$ with respect to the filtration by the ideals in the lower central series. Finite-dimensional naturally graded Lie algebras are known in sub-Riemannian geometry and geometric control theory, where they are called Carnot algebras. We classify the finite-dimensional and infinite-dimensional naturally graded Lie algebras $\mathfrak g=\bigoplus_{i=1}^{+\infty}\mathfrak g_i$ with the property $$\dim\mathfrak g_i+\dim\mathfrak g_{i+1}\le3,\qquad i\ge1.$$An arbitrary Lie algebra $\mathfrak g=\bigoplus_{i=1}^{+\infty}\mathfrak g_i$ of this class is generated by the two-dimensional subspace $\mathfrak g_1$, and the corresponding growth function $F_\mathfrak g^\mathrm{gr}(n)$ satisfies the bound $F_\mathfrak g^\mathrm{gr}(n)\le3n/2+1$. Bibliography: 32 titles.

About the authors

Dmitry Vladimirovich Millionshchikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Steklov Mathematical Institute of Russian Academy of Sciences

Email: dmitry.millionschikov@math.msu.ru
Doctor of physico-mathematical sciences, Professor

References

  1. А. А. Аграчев, “Некоторые вопросы субримановой геометрии”, УМН, 71:6(432) (2016), 3–36
  2. T. Barron, D. Kerner, M. Tvalavadze, “On varieties of Lie algebras of maximal class”, Canad. J. Math., 67:1 (2015), 55–89
  3. Y. Benoist, “Une nilvariete non affine”, J. Differential Geom., 41:1 (1995), 21–52
  4. В. М. Бухштабер, “Полиномиальные алгебры Ли и теорема Зельманова–Шалева”, УМН, 72:6(438) (2017), 199–200
  5. A. Caranti, S. Mattarei, M. F. Newman, C. M. Scoppola, “Thin groups of prime-power order and thin Lie algebras”, Quart. J. Math. Oxford Ser. (2), 47:3 (1996), 279–296
  6. A. Caranti, S. Mattarei, M. F. Newman, “Graded Lie algebras of maximal class”, Trans. Amer. Math. Soc., 349:10 (1997), 4021–4051
  7. А. Фиаловски, “Классификация градуированных алгебр Ли с двумя образующими”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1983, № 2, 62–64
  8. Д. Б. Фукс, Когомологии бесконечномерных алгебр Ли, Наука, М., 1984, 272 с.
  9. D. Fuchs, C. Wilmarth, “Laplacian spectrum for the nilpotent Kac–Moody Lie algebras”, Pacific J. Math., 247:2 (2010), 323–334
  10. L. Garcia Vergnolle, “Sur les algèbres de Lie quasi-filiformes admettant un tore de derivations”, Manuscripta Math., 124:4 (2007), 489–505
  11. H. Garland, “Dedekind's $eta$-function and the cohomology of infinite-dimensional Lie algebras”, Proc. Nat. Acad. Sci. U.S.A., 72:7 (1975), 2493–2495
  12. J. R. Gomez, A. Jimenez-Merchan, J. Reyes, “Maximum length filiform Lie algebras”, Extracta Math., 16:3 (2001), 405–421 (Spanish)
  13. J. R. Gomez, A. Jimenez-Merchan, “Naturally graded quasi-filiform Lie algebras”, J. Algebra, 256:1 (2002), 211–228
  14. M. Gromov, “Carnot–Caratheodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323
  15. В. Г. Кац, Бесконечномерные алгебры Ли, Мир, М., 1993, 426 с.
  16. V. G. Kac, “Some problems on infinite dimensional Lie algebras and their representations”, Lie algebras and related topics (New Brunswick, NJ, 1981), Lecture Notes in Math., 933, Springer, Berlin–New York, 1982, 117–126
  17. G. R. Krause, T. H. Lenagan, Growth of algebras and Gelfand–Kirillov dimension, Grad. Stud. Math., 22, Rev. ed., Amer. Math. Soc., Providence, RI, 2000, x+212 pp.
  18. S. Kumar, “Geometry of Schubert cells and cohomology of Kac–Moody Lie algebras”, J. Differential Geom., 20:2 (1984), 389–431
  19. J. Lepowsky, “Generalized Verma modules, loop spaces cohomology and MacDonald-type identities”, Ann. Sci. Ecole Norm. Sup. (4), 12:2 (1979), 169–234
  20. J. Lepowsky, S. Milne, “Lie algebraic approaches to classical partition identities”, Adv. in Math., 29:1 (1978), 15–59
  21. O. Mathieu, “Classification of simple graded Lie algebras of finite growth”, Invent. Math., 108 (1990), 455–519
  22. Д. В. Миллионщиков, “Филиформные $mathbb N$-градуированные алгебры Ли”, УМН, 57:2(344) (2002), 197–198
  23. D. V. Millionshchikov, “Graded filiform Lie algebras and symplectic nilmanifolds”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Adv. Math. Sci., 55, Amer. Math. Soc., Providence, RI, 2004, 259–279
  24. Д. В. Миллионщиков, “Характеристические алгебры Ли уравнений синус-Гордона и Цицейки”, УМН, 72:6(438) (2017), 203–204
  25. J. Milnor, “On fundamental groups of complete affinely flat manifolds”, Adv. in Math., 25:2 (1977), 178–187
  26. R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp.
  27. В. В. Морозов, “Классификация нильпотентных алгебр Ли шестого порядка”, Изв. вузов. Матем., 1958, № 4, 161–171
  28. V. Petrogradsky, “Nil Lie $p$-algebras of slow growth”, Comm. Algebra, 45:7 (2017), 2912–2941
  29. А. В. Рожков, “Нижний центральный ряд одной группы автоморфизмов деревьев”, Матем. заметки, 60:2 (1996), 225–237
  30. A. Shalev, E. I. Zelmanov, “Narrow Lie algebras: a coclass theory and a characterization of the Witt algebra”, J. Algebra, 189:2 (1997), 294–331
  31. A. Shalev, E. I. Zelmanov, “Narrow algebras and groups”, J. Math. Sci. (N. Y.), 93:6 (1999), 951–963
  32. M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l'etude de la variete des algèbres de Lie nilpotentes”, Bull. Soc. Math. France, 98 (1970), 81–116

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Millionshchikov D.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).