Time decay estimates for solutions of the Cauchy problem for the modified Kawahara equation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The large-time behaviour of solutions of the Cauchy problem for the modified Kawahara equation $$\begin{cases}u_t-\partial_xu^3-\frac a3\partial_x^3u+\frac b5\partial_x^5u=0,&(t,x)\in\mathbb R^2,u(0,x)=u_0(x),&x\in\mathbb R,\end{cases}$$where $a,b>0$, is investigated. Under the assumptions that the total mass of the initial data $\int u_0(x) dx$ is nonzero and the initial data $u_0$ are small in the norm of $\mathbf H^{2,1}$ it is proved that a global-in-time solution exists and estimates for its large-time decay are found. Bibliography: 19 titles.

About the authors

Pavel Ivanovich Naumkin

National Autonomous University of Mexico, Center of Mathematical Sciences

Email: pavelni@matmor.unam.mx

References

  1. Shang Bin Cui, Dong Gao Deng, Shuang Ping Tao, “Global existence of solutions for the Cauchy problem of the Kawahara equation with $L^{2}$ initial data”, Acta Math. Sin. (Engl. Ser.), 22:5 (2006), 1457–1466
  2. М. В. Федорюк, Асимптотика: интегралы и ряды, Наука, М., 1987, 544 с.
  3. N. Hayashi, “Global existence of small solutions to quadratic nonlinear Schrödinger equations”, Comm. Partial Differential Equations, 18:7-8 (1993), 1109–1124
  4. N. Hayashi, P. I. Naumkin, “The initial value problem for the cubic nonlinear Klein–Gordon equation”, Z. Angew. Math. Phys., 59:6 (2008), 1002–1028
  5. N. Hayashi, P. I. Naumkin, “Factorization technique for the fourth-order nonlinear Schrödinger equation”, Z. Angew. Math. Phys., 66:5 (2015), 2343–2377
  6. N. Hayashi, P. I. Naumkin, “On the inhomogeneous fourth-order nonlinear Schrödinger equation”, J. Math. Phys., 56:9 (2015), 093502, 25 pp.
  7. N. Hayashi, P. I. Naumkin, “Factorization technique for the modified Korteweg–de Vries equation”, SUT J. Math., 52:1 (2016), 49–95
  8. N. Hayashi, T. Ozawa, “Scattering theory in the weighted $L^2(mathbf R^{n})$ spaces for some Schrödinger equations”, Ann. Inst. H. Poincare Phys. Theor., 48:1 (1988), 17–37
  9. A. T. Il'ichev, A. Yu. Semenov, “Stability of solitary waves in dispersive media described by a fifth-order evolution equation”, Theoret. Comput. Fluid Dyn., 3:6 (1992), 307–326
  10. T. Kawahara, “Oscillatory solitary waves in dispersive media”, J. Phys. Soc. Japan, 33:1 (1972), 260–264
  11. S. Kichenassamy, P. J. Olver, “Existence and nonexistence of solitary wave solutions to higher-order model evolution equations”, SIAM J. Math. Anal., 23:5 (1992), 1141–1166
  12. S. Klainerman, “Long-time behavior of solutions to nonlinear evolution equations”, Arch. Rational Mech. Anal., 78:1 (1982), 73–98
  13. S. Klainerman, G. Ponce, “Global, small amplitude solutions to nonlinear evolution equations”, Comm. Pure Appl. Math., 36:1 (1983), 133–141
  14. I. P. Naumkin, “Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a potential”, J. Math. Phys., 57:5 (2016), 051501, 31 pp.
  15. I. P. Naumkin, “Initial-boundary value problem for the one dimensional Thirring model”, J. Differential Equations, 261:8 (2016), 4486–4523
  16. E. M. Stein, R. Shakarchi, Functional analysis. Introduction to further topics in analysis, Princeton Lect. Anal., 4, Princeton Univ. Press, Princeton, NJ, 2011, xviii+423 pp.
  17. А. Г. Свешников, А. Б. Альшин, М. О. Корпусов, Ю. Д. Плетнер, Линейные и нелинейные уравнения соболевского типа, Физматлит, М., 2007, 734 с.
  18. Hua Wang, Shang Bin Cui, Dong Gao Deng, “Global existence of solutions for the Kawahara equation in Sobolev spaces of negative indices”, Acta Math. Sin. (Engl. Ser.), 23:8 (2007), 1435–1446
  19. Guixiang Xu, “The Cauchy problem of the modified Kawahara equation”, J. Partial Differential Equations, 19:2 (2006), 126–146

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Naumkin P.I.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).