Высокоэффективная генерация третьей гармоники в среде с квадратичной и кубичной нелинейностями в результате каскадной генерации второй гармоники

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new highly efficient method for tripling the frequency of optical waves is proposed based on cascade second-harmonic generation in a medium with quadratic susceptibility taking into account the cubic response of the medium. The interactions of the fundamental, second, and third harmonic waves occurred at a large phase detuning between the fundamental and second harmonic waves. In a medium with only quadratic susceptibility, this resulted in a response of the medium similar to the response inherent in a medium with cubic nonlinearity, the sign of which is determined by the sign of the above-mentioned phase detuning. The process of wave interaction is considered theoretically based on the multiscale method. Without using the specified field approximation, the modes of frequency conversion, intensity and phase evolution of interacting waves are analyzed without taking into account their second-order dispersion and diffraction. A bistable mode of frequency tripling, as well as a mode of complete suppression of wave generation at the tripled frequency and a mode of suppression of the Kerr effect are discovered. Computer simulation has shown the possibility of pumping 98.5% of the incident wave energy into the third harmonic. A simpler and more physically visual (compared to the multi-scale method) method for analyzing cascade processes with a large phase mismatch between a pair of interacting waves is also proposed.

About the authors

V. A. Trofimov

South China University of Technology

Author for correspondence.
Email: trofimov@scut.edu.cn
Taiwan, Province of China

Д. М. Харитонов

Московский государственный университет имени М.В.Ломоносова

Email: trofimov@scut.edu.cn
Russian Federation, Москва, Ленинские горы, д.1. стр. 52, 119992

М. В. Федотов

Московский государственный университет имени М.В.Ломоносова

Email: trofimov@scut.edu.cn
Russian Federation, Москва, Ленинские горы, д.1. стр. 52, 119992

Y. Yang

South China University of Technology

Email: trofimov@scut.edu.cn
Taiwan, Province of China

C. Deng

South China University of Technology

Email: trofimov@scut.edu.cn
Russian Federation

References

  1. Craxton R.S. Opt. Commun., 34, 474 (1980).
  2. Craxton R. IEEE J. Quantum Electron., 17, 1771 (1981).
  3. Dubietis A., Tamošauskas G., Varanavičius A. Opt. Commun., 186, 211 (2000).
  4. Zhang T., Kato Y., Daido H. IEEE J. Quantum Electron., 32, 127 (1996).
  5. Wang X., Zhao H., Cao Y., Niu Y., Shen J. Langmuir, 34, 10262 (2018).
  6. Qi H., Wang Z., Yu F., Xu X., Zhao X. IEEE Photonics J., 8, 1 (2016).
  7. Qi H., Wang Z., Yu F., Sun X., Xu X., Zhao X. Opt. Lett., 41, 5823 (2016).
  8. Ren H.K., Qi H.W., Wang Z.P., Wu Z.X., Wang M.X., Sun Y.X., Sun X., Xu X.G. Chin. Phys. B, 27, 114202 (2018).
  9. Zhu S., Zhu Y., Ming N. Science, 278, 843 (1997).
  10. Zhang C., Wei H., Zhu Y.Y., Wang H.T., Zhu S.N., Ming N.B. Opt. Lett., 26, 899 (2001).
  11. Longhi S. Opt. Lett., 32, 1791 (2007).
  12. Vernay A., Bonnet-Gamard L., Boutou V., Trajtenberg-Mills S., Arie A., Boulanger B. OSA Continuum, 3, 1536 (2020).
  13. Das S.K., Mukhopadhyay S., Sinha N., Saha A., Datta P.K., Saltiel S.M., Andreani L.C. Opt. Commun., 262, 108 (2006).
  14. Qiu P., Penzkofer A. Appl. Phys. B, 45, 225 (1998).
  15. Tomov I.V., Van Wonterghem B., Rentzepis P.M. Appl. Opt.. 31, 4172 (1992).
  16. Banks P.S., Feit M.D., Perry M.D. Opt. Lett., 24, 4 (1999).
  17. Banks P.S., Feit M.D., Perry M.D. JOSA B, 19, 102 (2001).
  18. Boulanger B., Rousseau I., Marnier G. J. Phys. B: Atomic, Molecular and Optical Physics, 32, 475 (1999).
  19. Feve J.P., Boulanger B., Guillien Y. Opt. Lett., 25, 1373 (2000).
  20. Miyata K., Petrov V., Noack F. Opt. Lett., 36, 3627 (2011).
  21. Qin Y.Q., Zhu Y.Y., Zhang C., Ming N.B. JOSA B, 20, 73 (2003).
  22. Zhang T., Yamakawa K. Japanese J. Appl. Phys., 39, 91 (2000).
  23. Saltiel S.M., Sukhorukov A.A., Kivshar Y.S. Progress in Optics, 47, 1 (2005).
  24. Карамзин Ю.Н., Сухоруков А.П. Письма в ЖЭТФ, 20, 734 (1974) [JETF Lett., 20, 339 (1974)].
  25. Torruellas W.E., Wang Z., Hagan D.J., VanStryland E.W., Stegeman G.I., Torner L., Menyuk C.R. Phys. Rev. Lett., 74, 5036 (1995).
  26. Schiek R., Baek Y., Stegeman G.I. Phys. Rev. E, 53, 1138 (1996).
  27. Di Trapani P., Caironi D., Valiulis G., Dubietis A., Danielius R., Piskarskas A. Phys. Review Lett, 81, 570 (1998).
  28. Buryak A.V., Di Trapani P., Skryabin D.V., Trillo S. Phys. Rep., 370, 63 (2002).
  29. Boyd R.W. Nonlinear Optics (Academic Press, 2020).
  30. Nayfeh A.H. Introduction to Perturbation Techniques (John Wiley & Sons, 2011).
  31. Conti C., Trillo S., Di Trapani P., Kilius J., Bramati A., Minardi S., Chinaglia W., Valiulis G. JOSA B, 19, 852 (2002).
  32. Trofimov V.A., Kharitonov D.M., Fedotov M.V. JOSA B, 35, 3069 (2018).
  33. Гурзадян Г.Г., Дмитриев В.Г., Никогосян Д.Н. Нелинейно-оптические кристаллы. Свойства и применение в квантовой электронике (М.: Радио и Связь, 1991) [Handbook of Nonlinear Optical Crystals (Springer, 2013)].
  34. Eckardt R.C., Masuda H., Fan Y.X., Byer R.L. IEEE J. Quantum Electron., 26, 922 (1990).
  35. Chen C., Xu Z., Deng D., Zhang J., Wong G.K., Wu B., Ye N., Tang D. Appl. Phys. Lett., 68, 2930 (1996).
  36. Nikogosyan D.N. Nonlinear Optical Crystals: A Complete Survey (Springer Science & Business Media, 2006).
  37. Ganeev R.A., Kulagin I.A., Ryasnyansky A.I., Tugushev R.I., Usmanov T. Opt. Commun., 229, 403 (2004).
  38. Li F.Q, Zong N., Zhang F.F., Yang J., Yang F., Peng Q.G., Cui D.F., Zhang J.Y., Wang X.Y., Chen C.T., Xu Z.Y. Appl. Phys. B, 108, 301 (2011).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Areas of different THG modes and the dependence of its efficiency on parameters s, q.

Download (86KB)
3. Fig.2. Modules of the amplitude of the third harmonic (a, d), the phase of the fundamental wave (b, e) and the third harmonic (c, f), calculated for the parameter values ​​g = 1, a = 0.05, D21k = 100, D31k = – 0.033 and |A10 |2 = 1 (a – c), |A10|2 = 0.147944 (d – f) when implementing low- (a – c) and high-efficiency (d – f) generation modes.

Download (175KB)
4. Fig.3. Modules of the amplitude of the third harmonic (a, d), phase of the first (b, e) and third harmonics (c, f) for parameter values ​​g = 1, a = 0, D21k = 20 and (D31k,|A10|2) = ( – 0.05979923575, 1) (a – c), (– 0.054, 1) (d – f).

Download (162KB)
5. Fig.4. Modules of the amplitude of the third harmonic (a, d), phase of the first (b, e) and third harmonics (c, f) for parameter values ​​g = 1, a = 0.075, D21k = 20, |A10|2 = 1 and D31k = – 0.075 (a – c), – 0.072 (d – f).

Download (183KB)
6. Fig.5. The influence of cubic nonlinearity on the evolution of the third harmonic intensity at g = 1, D31k = 0 and D21k = 20 (a), – 20 (b).

Download (129KB)
7. Fig.6. Intensity of the third harmonic at g = 1, D21k = 100, D31k = – 0.012 and a = 0.00014 (solid black curve) and 0 (green dashed curve).

Download (41KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).