Высокоэффективная генерация третьей гармоники в среде с квадратичной и кубичной нелинейностями в результате каскадной генерации второй гармоники

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A new highly efficient method for tripling the frequency of optical waves is proposed based on cascade second-harmonic generation in a medium with quadratic susceptibility taking into account the cubic response of the medium. The interactions of the fundamental, second, and third harmonic waves occurred at a large phase detuning between the fundamental and second harmonic waves. In a medium with only quadratic susceptibility, this resulted in a response of the medium similar to the response inherent in a medium with cubic nonlinearity, the sign of which is determined by the sign of the above-mentioned phase detuning. The process of wave interaction is considered theoretically based on the multiscale method. Without using the specified field approximation, the modes of frequency conversion, intensity and phase evolution of interacting waves are analyzed without taking into account their second-order dispersion and diffraction. A bistable mode of frequency tripling, as well as a mode of complete suppression of wave generation at the tripled frequency and a mode of suppression of the Kerr effect are discovered. Computer simulation has shown the possibility of pumping 98.5% of the incident wave energy into the third harmonic. A simpler and more physically visual (compared to the multi-scale method) method for analyzing cascade processes with a large phase mismatch between a pair of interacting waves is also proposed.

Авторлар туралы

V. Trofimov

South China University of Technology

Хат алмасуға жауапты Автор.
Email: trofimov@scut.edu.cn
Қытай республикасы

Д. Харитонов

Московский государственный университет имени М.В.Ломоносова

Email: trofimov@scut.edu.cn
Ресей, Москва, Ленинские горы, д.1. стр. 52, 119992

М. Федотов

Московский государственный университет имени М.В.Ломоносова

Email: trofimov@scut.edu.cn
Ресей, Москва, Ленинские горы, д.1. стр. 52, 119992

Y. Yang

South China University of Technology

Email: trofimov@scut.edu.cn
Қытай республикасы

C. Deng

South China University of Technology

Email: trofimov@scut.edu.cn
Ресей

Әдебиет тізімі

  1. Craxton R.S. Opt. Commun., 34, 474 (1980).
  2. Craxton R. IEEE J. Quantum Electron., 17, 1771 (1981).
  3. Dubietis A., Tamošauskas G., Varanavičius A. Opt. Commun., 186, 211 (2000).
  4. Zhang T., Kato Y., Daido H. IEEE J. Quantum Electron., 32, 127 (1996).
  5. Wang X., Zhao H., Cao Y., Niu Y., Shen J. Langmuir, 34, 10262 (2018).
  6. Qi H., Wang Z., Yu F., Xu X., Zhao X. IEEE Photonics J., 8, 1 (2016).
  7. Qi H., Wang Z., Yu F., Sun X., Xu X., Zhao X. Opt. Lett., 41, 5823 (2016).
  8. Ren H.K., Qi H.W., Wang Z.P., Wu Z.X., Wang M.X., Sun Y.X., Sun X., Xu X.G. Chin. Phys. B, 27, 114202 (2018).
  9. Zhu S., Zhu Y., Ming N. Science, 278, 843 (1997).
  10. Zhang C., Wei H., Zhu Y.Y., Wang H.T., Zhu S.N., Ming N.B. Opt. Lett., 26, 899 (2001).
  11. Longhi S. Opt. Lett., 32, 1791 (2007).
  12. Vernay A., Bonnet-Gamard L., Boutou V., Trajtenberg-Mills S., Arie A., Boulanger B. OSA Continuum, 3, 1536 (2020).
  13. Das S.K., Mukhopadhyay S., Sinha N., Saha A., Datta P.K., Saltiel S.M., Andreani L.C. Opt. Commun., 262, 108 (2006).
  14. Qiu P., Penzkofer A. Appl. Phys. B, 45, 225 (1998).
  15. Tomov I.V., Van Wonterghem B., Rentzepis P.M. Appl. Opt.. 31, 4172 (1992).
  16. Banks P.S., Feit M.D., Perry M.D. Opt. Lett., 24, 4 (1999).
  17. Banks P.S., Feit M.D., Perry M.D. JOSA B, 19, 102 (2001).
  18. Boulanger B., Rousseau I., Marnier G. J. Phys. B: Atomic, Molecular and Optical Physics, 32, 475 (1999).
  19. Feve J.P., Boulanger B., Guillien Y. Opt. Lett., 25, 1373 (2000).
  20. Miyata K., Petrov V., Noack F. Opt. Lett., 36, 3627 (2011).
  21. Qin Y.Q., Zhu Y.Y., Zhang C., Ming N.B. JOSA B, 20, 73 (2003).
  22. Zhang T., Yamakawa K. Japanese J. Appl. Phys., 39, 91 (2000).
  23. Saltiel S.M., Sukhorukov A.A., Kivshar Y.S. Progress in Optics, 47, 1 (2005).
  24. Карамзин Ю.Н., Сухоруков А.П. Письма в ЖЭТФ, 20, 734 (1974) [JETF Lett., 20, 339 (1974)].
  25. Torruellas W.E., Wang Z., Hagan D.J., VanStryland E.W., Stegeman G.I., Torner L., Menyuk C.R. Phys. Rev. Lett., 74, 5036 (1995).
  26. Schiek R., Baek Y., Stegeman G.I. Phys. Rev. E, 53, 1138 (1996).
  27. Di Trapani P., Caironi D., Valiulis G., Dubietis A., Danielius R., Piskarskas A. Phys. Review Lett, 81, 570 (1998).
  28. Buryak A.V., Di Trapani P., Skryabin D.V., Trillo S. Phys. Rep., 370, 63 (2002).
  29. Boyd R.W. Nonlinear Optics (Academic Press, 2020).
  30. Nayfeh A.H. Introduction to Perturbation Techniques (John Wiley & Sons, 2011).
  31. Conti C., Trillo S., Di Trapani P., Kilius J., Bramati A., Minardi S., Chinaglia W., Valiulis G. JOSA B, 19, 852 (2002).
  32. Trofimov V.A., Kharitonov D.M., Fedotov M.V. JOSA B, 35, 3069 (2018).
  33. Гурзадян Г.Г., Дмитриев В.Г., Никогосян Д.Н. Нелинейно-оптические кристаллы. Свойства и применение в квантовой электронике (М.: Радио и Связь, 1991) [Handbook of Nonlinear Optical Crystals (Springer, 2013)].
  34. Eckardt R.C., Masuda H., Fan Y.X., Byer R.L. IEEE J. Quantum Electron., 26, 922 (1990).
  35. Chen C., Xu Z., Deng D., Zhang J., Wong G.K., Wu B., Ye N., Tang D. Appl. Phys. Lett., 68, 2930 (1996).
  36. Nikogosyan D.N. Nonlinear Optical Crystals: A Complete Survey (Springer Science & Business Media, 2006).
  37. Ganeev R.A., Kulagin I.A., Ryasnyansky A.I., Tugushev R.I., Usmanov T. Opt. Commun., 229, 403 (2004).
  38. Li F.Q, Zong N., Zhang F.F., Yang J., Yang F., Peng Q.G., Cui D.F., Zhang J.Y., Wang X.Y., Chen C.T., Xu Z.Y. Appl. Phys. B, 108, 301 (2011).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig.1. Areas of different THG modes and the dependence of its efficiency on parameters s, q.

Жүктеу (86KB)
3. Fig.2. Modules of the amplitude of the third harmonic (a, d), the phase of the fundamental wave (b, e) and the third harmonic (c, f), calculated for the parameter values ​​g = 1, a = 0.05, D21k = 100, D31k = – 0.033 and |A10 |2 = 1 (a – c), |A10|2 = 0.147944 (d – f) when implementing low- (a – c) and high-efficiency (d – f) generation modes.

Жүктеу (175KB)
4. Fig.3. Modules of the amplitude of the third harmonic (a, d), phase of the first (b, e) and third harmonics (c, f) for parameter values ​​g = 1, a = 0, D21k = 20 and (D31k,|A10|2) = ( – 0.05979923575, 1) (a – c), (– 0.054, 1) (d – f).

Жүктеу (162KB)
5. Fig.4. Modules of the amplitude of the third harmonic (a, d), phase of the first (b, e) and third harmonics (c, f) for parameter values ​​g = 1, a = 0.075, D21k = 20, |A10|2 = 1 and D31k = – 0.075 (a – c), – 0.072 (d – f).

Жүктеу (183KB)
6. Fig.5. The influence of cubic nonlinearity on the evolution of the third harmonic intensity at g = 1, D31k = 0 and D21k = 20 (a), – 20 (b).

Жүктеу (129KB)
7. Fig.6. Intensity of the third harmonic at g = 1, D21k = 100, D31k = – 0.012 and a = 0.00014 (solid black curve) and 0 (green dashed curve).

Жүктеу (41KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).