Исследование полупроводникового дискового лазера, излучающего на длине волны 780 нм, на основе гетероструктуры с квантовыми ямами AlxGa1 – xAs/AlyGa1 – yAs при оптической накачке с различной длиной волны излучения

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A semiconductor disk laser (SDL) based on the AlxGa1 – x As/AlyGa1 – y As heterostructure emitting at a wavelength near 780 nm was investigated under pumping by a pulsed dye laser with emission wavelengths of 601 and 656 nm. A structure with a built-in Bragg mirror and 10 quantum wells (QW) arranged in depth with a period equal to half the laser emission wavelength in the structure was used. Under pumping with l = 601 nm, a power of 9.3 W was achieved at a wavelength of 782 nm with a differential efficiency of 12%. Under pumping with l = 656 nm, the differential efficiency remained virtually unchanged, although the pump absorption in depth was more uniform. These results are compared with those obtained previously with laser pumping at 450 and 532 nm wavelengths, as well as with electron beam pumping. It is concluded that the distribution of nonequilibrium carriers over the QW is largely determined by their diffusion length, which in this structure is approximately 1 μm.

About the authors

В. И. Козловский

Физический институт им. П.Н.Лебедева РАН

Author for correspondence.
Email: kozlovskiyvi@lebedev.ru
Russian Federation, Москва, Ленинский просп., 53, 119991

С. М. Женишбеков

Физический институт им. П.Н.Лебедева РАН

Email: kozlovskiyvi@lebedev.ru
Russian Federation, Москва, Ленинский просп., 53, 119991

Я. К. Скасырский

Физический институт им. П.Н.Лебедева РАН

Email: kozlovskiyvi@lebedev.ru
Russian Federation, Москва, Ленинский просп., 53, 119991

М. П. Фролов

Физический институт им. П.Н.Лебедева РАН

Email: kozlovskiyvi@lebedev.ru
Russian Federation, Москва, Ленинский просп., 53, 119991

А. Ю. Андреев

Научно-исследовательский институт «Полюс» им. М.Ф. Стельмаха

Email: kozlovskiyvi@lebedev.ru
Russian Federation, Москва, ул. Введенского д. 3, корп.1, 117342

И. В. Яроцкая

Научно-исследовательский институт «Полюс» им. М.Ф. Стельмаха

Email: kozlovskiyvi@lebedev.ru
Russian Federation, Москва, ул. Введенского д. 3, корп.1, 117342

А. А. Мармалюк

Научно-исследовательский институт «Полюс» им. М.Ф. Стельмаха

Email: kozlovskiyvi@lebedev.ru
Russian Federation, Москва, ул. Введенского д. 3, корп.1, 117342

References

  1. Jetter M., Michler P. Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications (Wiley, 2021).
  2. Hastie J.E., Calvez S., Dawson M.D., in Semiconductor lasers (Woodhead Publishing Limited, 2013, p. 341).
  3. Baumgärtner S., Kahle H., Bek R., Schwarzbäck T., Jetter M., Michler P. J. Crystal Growth, 414, 219 (2015).
  4. Sirbu A., Volet N., Mereuta A., Lyytikainen J., Rautiainen J., Okhotnikov O., Walczak J., Wasiak M., Czyszanowski T., Caliman A., Zhu Q., Iakovlev V., Kapon E. Advances in Optical Technologies, 2011, 209093 (2011).
  5. Бутаев М.Р., Скасырский Я.К., Козловский В.И., Андреев А.Ю., Яроцкая И.В., Мармалюк А.А. Квантовая электроника, 52 (4), 362 (2022) [Quantum Electron., 52 (4), 362 (2022)].
  6. Kahle H., Penttinen J.-P., Phung H.-M., Rajala P., Tukiainen A., Ranta S., Guina M. Opt. Lett., 44 (5), 1146 (2019).
  7. Aspnes D.E., Kelso S.M., Logan R.A., Bhat R. J. Appl. Phys., 60, 754 (1986).
  8. Wittryand D.B., Kyser D.F. J. Appl. Phys., 38, 375 (1967).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Schematic representation of the band diagram of the heterostructure under study for PDL (the Bragg grating is shown partially).

Download (48KB)
3. Fig.2. Optical design of the PDL: 1 – dye laser; 2 – optical divider; 3 – optical attenuator; 4 – focusing lens; 5 – structure fixed on a copper substrate; 6 – external mirror; 7 – coaxial photocell FEK-29; 8 – oscilloscope.

Download (42KB)
4. Fig.3. PDL emission spectra at two different pump wavelengths.

Download (62KB)
5. Fig.4. Luminescence spot on the surface of the structure (a) and the angular distribution of PDL radiation in the far zone (b) when pumped with radiation with a wavelength of 601 nm and an input peak power of 50 W.

Download (863KB)
6. Fig.5. Oscillograms of PDL and pump radiation pulses at a wavelength of 601 nm and peak absorbed pump powers of 10 and 70 W.

Download (74KB)
7. Fig.6. Dependences of the peak emission power of the PDL on the peak absorbed pump power for pump wavelengths of 601 and 656 nm.

Download (65KB)
8. Fig.7. Dependences of the generation rate of nonequilibrium carriers ∆n/∆t on the structure depth z for pump wavelengths 450 (green curve), 601 (red curve) and 656 nm (blue curve), as well as the distribution of the band gap over the structure depth (black curve) .

Download (104KB)
9. Fig.8. Quasi-stationary distribution of the concentration of diffusing nonequilibrium carriers over the depth of the structure for pump wavelengths of 601 and 656 nm in the absence of diffusion and for different carrier capture efficiencies by quantum wells (parameter k in equation (3)).

Download (109KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).