Mechanical response of amorphous Ni62Nb38 metallic alloy under uniaxial deformation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The mechanical properties of amorphous Ni62Nb38 alloy associated with uniaxial compression and uniaxial tensile are studied at the temperature 300 K based on the large-scale molecular dynamic’s simulations. Stress-strain curves, Young’s modulus, yield strength, and tensile strength are determined for this system. For the first time, some correspondence was found between the values of Young’s modulus and the yield strength, which fits into the experimentally established linear law, which is the same for metallic glasses with different compositions. It is shown that the mechanical and strength properties of amorphous Ni62Nb38 alloy are more pronounced than those of metallic glasses with a different composition.

Sobre autores

B. Galimzyanov

Kazan Federal University

Autor responsável pela correspondência
Email: bulatgnmail@gmail.com
Russia, 420008, Kazan

M. Doronina

Kazan Federal University

Email: bulatgnmail@gmail.com
Russia, 420008, Kazan

A. Mokshin

Kazan Federal University

Email: bulatgnmail@gmail.com
Russia, 420008, Kazan

Bibliografia

  1. Schroers J. // Adv. Mater. 2010. V. 22. P. 1566.
  2. Kruzic J.J. // Adv. Engin. Mater. 2016. V. 18. P. 1308.
  3. Xiong J., Shi S.-Q., Zhang T.-Y. // Mater. Design. 2020. V. 187. Art. No. 108378.
  4. Ward L., O’Keeffe S.C., Stevick J. et al. // Acta Mater. 2018. V. 159. P. 102.
  5. Schuler J.D., Rupert T.J. // Acta Mater. 2017. V. 140. P. 196.
  6. Galimzyanov B.N., Mokshin A.V. // J. Non-Cryst. Solids. 2021. V. 570. Art. No. 121009.
  7. Jones M.R., DelRio F.W., Pegues J.W. et al. // J. Mater. Res. 2021. V. 36. P. 3167.
  8. Xia L., Li W.H., Fang S.S. et al. // J. Appl. Phys. 2006. V. 99. Art. No. 026103.
  9. Lu W., Tseng J.-C., Feng A. et al. // J. Non-Cryst. Solids. 2021. V. 564. Art. No. 120834.
  10. Qu R.T., Liu Z.Q., Wang R.F. et al. // J. Alloys Compounds. 2015. V. 637. P. 44.
  11. Zhang Y., Ashcraft R., Mendelev M.I. et al. // J. Chem. Phys. 2016. V. 145. Art. No. 204505.
  12. Lesz S., Dercz G. // J. Therm. Analyt. Calorim. 2016. V. 126. P. 19.
  13. Galimzyanov B.N., Doronina M.A., Mokshin A.V. // J. Non-Cryst. Solids. 2021. V. 572. Art. No. 121102.
  14. Tuckerman M.E., Alejandre J., López-Rendón R. et al. // J. Phys. A. 2006. V. 39. P. 5629.
  15. Shinoda W., Shiga M., Mikami M. // Phys. Rev. B. 2004. V. 69. Art. No. 134103.
  16. Bringa E.M., Caro A., Wang Y. et al. // Science. 2005. V. 309. P. 1838.
  17. Shen L.-M. // Acta Mech. Sin. 2012. V. 28. P. 1125.
  18. Evans D.J., Morriss G.P. Statistical mechanics of non-equilibrium liquids. Cambridge University Press, 2008. 328 p.
  19. Galimzyanov B.N., Mokshin A.V. // Int. J. Solids Struct. 2021. V. 224. Art. No. 111047.
  20. Xia L., Shan S.T., Ding D. et al. // Intermetallics. 2007. V. 15. P. 1046.
  21. Teker E., Danish M., Gupta M.K. et al. // Trans. Indian Inst. Met. 2022. V. 75. P. 717.
  22. Fan H., Wang Q., El-Awady J.A. et al. // Nature Commun. 2021. V. 12. P. 1845.
  23. Courtney T.H. Mechanical behavior of materials. Waveland Press, 2005. 752 p.
  24. Бобылев А.В. Механические и технологические свойства металлов. Справочник. М.: Металлургия, 1980.
  25. Wang W.H. // J. Appl. Phys. 2006. V. 99. Art. No. 093506.
  26. Wang Y., Wang Q., Zhao J. et al. // Scripta Mater. 2010. V. 63. P. 178.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (763KB)
3.

Baixar (112KB)

Declaração de direitos autorais © Б.Н. Галимзянов, М.А. Доронина, А.В. Мокшин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies