Mechanical response of amorphous Ni62Nb38 metallic alloy under uniaxial deformation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The mechanical properties of amorphous Ni62Nb38 alloy associated with uniaxial compression and uniaxial tensile are studied at the temperature 300 K based on the large-scale molecular dynamic’s simulations. Stress-strain curves, Young’s modulus, yield strength, and tensile strength are determined for this system. For the first time, some correspondence was found between the values of Young’s modulus and the yield strength, which fits into the experimentally established linear law, which is the same for metallic glasses with different compositions. It is shown that the mechanical and strength properties of amorphous Ni62Nb38 alloy are more pronounced than those of metallic glasses with a different composition.

About the authors

B. N. Galimzyanov

Kazan Federal University

Author for correspondence.
Email: bulatgnmail@gmail.com
Russia, 420008, Kazan

M. А. Doronina

Kazan Federal University

Email: bulatgnmail@gmail.com
Russia, 420008, Kazan

A. V. Mokshin

Kazan Federal University

Email: bulatgnmail@gmail.com
Russia, 420008, Kazan

References

  1. Schroers J. // Adv. Mater. 2010. V. 22. P. 1566.
  2. Kruzic J.J. // Adv. Engin. Mater. 2016. V. 18. P. 1308.
  3. Xiong J., Shi S.-Q., Zhang T.-Y. // Mater. Design. 2020. V. 187. Art. No. 108378.
  4. Ward L., O’Keeffe S.C., Stevick J. et al. // Acta Mater. 2018. V. 159. P. 102.
  5. Schuler J.D., Rupert T.J. // Acta Mater. 2017. V. 140. P. 196.
  6. Galimzyanov B.N., Mokshin A.V. // J. Non-Cryst. Solids. 2021. V. 570. Art. No. 121009.
  7. Jones M.R., DelRio F.W., Pegues J.W. et al. // J. Mater. Res. 2021. V. 36. P. 3167.
  8. Xia L., Li W.H., Fang S.S. et al. // J. Appl. Phys. 2006. V. 99. Art. No. 026103.
  9. Lu W., Tseng J.-C., Feng A. et al. // J. Non-Cryst. Solids. 2021. V. 564. Art. No. 120834.
  10. Qu R.T., Liu Z.Q., Wang R.F. et al. // J. Alloys Compounds. 2015. V. 637. P. 44.
  11. Zhang Y., Ashcraft R., Mendelev M.I. et al. // J. Chem. Phys. 2016. V. 145. Art. No. 204505.
  12. Lesz S., Dercz G. // J. Therm. Analyt. Calorim. 2016. V. 126. P. 19.
  13. Galimzyanov B.N., Doronina M.A., Mokshin A.V. // J. Non-Cryst. Solids. 2021. V. 572. Art. No. 121102.
  14. Tuckerman M.E., Alejandre J., López-Rendón R. et al. // J. Phys. A. 2006. V. 39. P. 5629.
  15. Shinoda W., Shiga M., Mikami M. // Phys. Rev. B. 2004. V. 69. Art. No. 134103.
  16. Bringa E.M., Caro A., Wang Y. et al. // Science. 2005. V. 309. P. 1838.
  17. Shen L.-M. // Acta Mech. Sin. 2012. V. 28. P. 1125.
  18. Evans D.J., Morriss G.P. Statistical mechanics of non-equilibrium liquids. Cambridge University Press, 2008. 328 p.
  19. Galimzyanov B.N., Mokshin A.V. // Int. J. Solids Struct. 2021. V. 224. Art. No. 111047.
  20. Xia L., Shan S.T., Ding D. et al. // Intermetallics. 2007. V. 15. P. 1046.
  21. Teker E., Danish M., Gupta M.K. et al. // Trans. Indian Inst. Met. 2022. V. 75. P. 717.
  22. Fan H., Wang Q., El-Awady J.A. et al. // Nature Commun. 2021. V. 12. P. 1845.
  23. Courtney T.H. Mechanical behavior of materials. Waveland Press, 2005. 752 p.
  24. Бобылев А.В. Механические и технологические свойства металлов. Справочник. М.: Металлургия, 1980.
  25. Wang W.H. // J. Appl. Phys. 2006. V. 99. Art. No. 093506.
  26. Wang Y., Wang Q., Zhao J. et al. // Scripta Mater. 2010. V. 63. P. 178.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (763KB)
3.

Download (112KB)

Copyright (c) 2023 Б.Н. Галимзянов, М.А. Доронина, А.В. Мокшин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies