Formation of skyrmions in thin CoPt films with an atomic force microscope probe

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Methods of magnetic force microscopy have been developed that make it possible to visualize the evolution of the domain structure when scanning a sample with a magnetic probe. These methods were used to study the processes of formation of skyrmions in thin CoPt films, a characteristic feature of which is the presence of the Dzyaloshinskii–Moriya interaction. A change in the position, shape, and size of skyrmions under the action of a spatially inhomogeneous magnetic field of the probe has been experimentally demonstrated.

About the authors

A. G. Temiryazev

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics
of the Russian Academy of Sciences

Author for correspondence.
Email: temiryazev@gmail.com
Russia, 141190, Fryazino

A. V. Zdoroveishchev

Scientific Research Institute of Physics and Technology, Nizhny Novgorod State University

Email: temiryazev@gmail.com
Russia, 603950, Nizhny Novgorod

M. P. Temiryazeva

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics
of the Russian Academy of Sciences

Email: temiryazev@gmail.com
Russia, 141190, Fryazino

References

  1. Chang J., Mironov V.L., Gribkov B.A. et al. // J. Appl. Phys. 2006. V. 100. Art. No. 104304.
  2. Mironov V.L., Gribkov B.A., Vdovichev S.N. et al. // J. Appl. Phys. 2009. V. 106. Art. No. 053911.
  3. Dzyaloshinskii I. // J. Phys. Chem. Solids. 1958. V. 4. P. 241.
  4. Moriya T. // Phys. Rev. 1960. V. 120. P. 91.
  5. Wiesendanger R. // Nature. Rev. Mater. 2016. V. 1. Art. No. 16044.
  6. Fert A., Reyren N., Cros V. // Nature Rev. Mater. 2017. V. 2. Art. No. 17031.
  7. Здоровейщев А.В., Дорохин М.В., Вихрова О.В. и др. // ФТТ. 2016. Т. 58. № 11. С. 2186; Zdoroveyshchev A.V., Dorokhin M.V., Vikhrova O.V. et al. // Phys. Solid State. 2016. V. 58. No. 11. P. 2267.
  8. Zhang S., Zhang J., Zhang Q. et al. // Appl. Phys. Lett. 2018. V. 112. Art. No. 132405.
  9. Темирязев А.Г., Темирязева М.П., Здоровейщев А.В. и др. // ФТТ. 2018. Т. 60. № 11. С. 2158; Temiryazev A.G., Temiryazeva M.P., Zdoroveyshchev A.V. // Phys. Solid State. 2018. V. 60. No. 11. P. 2200.
  10. Casiraghi A., Corte-León H., Vafaee M. et al. // Commun. Phys. 2019. V. 2. P. 145.
  11. Калентьева И.Л., Вихрова О.В., Данилов Ю.А. и др. // ФТТ. 2019. Т. 61. № 9. С. 1694; Kalentyeva I.L., Vikhrova O.V., Danilov Y.A. et al. // Phys. Solid State. 2019. V. 61. No. 9. P. 1646.
  12. Калентьева И.Л., Вихрова О.В., Данилов Ю.А. и др. // ФТТ. 2021. Т. 63. № 3. С. 324; Kalentyeva I.L., Vikhrova O.V., Danilov Y.A. et al. // Phys. Solid State. 2021. V. 63. No. 3. P. 384.
  13. Zdoroveyshchev A.V., Vikhrova O.V., Demina P.B. et al. // Int. J. Nanosci. 2019. V. 18. Art. No. 1940019.
  14. Abe M., Sugimoto Y., Custance O., Morita S. // Appl. Phys. Lett. 2005. V. 87. Art. No. 173503.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (1MB)

Copyright (c) 2023 А.Г. Темирязев, А.В. Здоровейщев, М.П. Темирязева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies