Formation of skyrmions in thin CoPt films with an atomic force microscope probe

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Methods of magnetic force microscopy have been developed that make it possible to visualize the evolution of the domain structure when scanning a sample with a magnetic probe. These methods were used to study the processes of formation of skyrmions in thin CoPt films, a characteristic feature of which is the presence of the Dzyaloshinskii–Moriya interaction. A change in the position, shape, and size of skyrmions under the action of a spatially inhomogeneous magnetic field of the probe has been experimentally demonstrated.

Sobre autores

A. Temiryazev

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics
of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: temiryazev@gmail.com
Russia, 141190, Fryazino

A. Zdoroveishchev

Scientific Research Institute of Physics and Technology, Nizhny Novgorod State University

Email: temiryazev@gmail.com
Russia, 603950, Nizhny Novgorod

M. Temiryazeva

Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics
of the Russian Academy of Sciences

Email: temiryazev@gmail.com
Russia, 141190, Fryazino

Bibliografia

  1. Chang J., Mironov V.L., Gribkov B.A. et al. // J. Appl. Phys. 2006. V. 100. Art. No. 104304.
  2. Mironov V.L., Gribkov B.A., Vdovichev S.N. et al. // J. Appl. Phys. 2009. V. 106. Art. No. 053911.
  3. Dzyaloshinskii I. // J. Phys. Chem. Solids. 1958. V. 4. P. 241.
  4. Moriya T. // Phys. Rev. 1960. V. 120. P. 91.
  5. Wiesendanger R. // Nature. Rev. Mater. 2016. V. 1. Art. No. 16044.
  6. Fert A., Reyren N., Cros V. // Nature Rev. Mater. 2017. V. 2. Art. No. 17031.
  7. Здоровейщев А.В., Дорохин М.В., Вихрова О.В. и др. // ФТТ. 2016. Т. 58. № 11. С. 2186; Zdoroveyshchev A.V., Dorokhin M.V., Vikhrova O.V. et al. // Phys. Solid State. 2016. V. 58. No. 11. P. 2267.
  8. Zhang S., Zhang J., Zhang Q. et al. // Appl. Phys. Lett. 2018. V. 112. Art. No. 132405.
  9. Темирязев А.Г., Темирязева М.П., Здоровейщев А.В. и др. // ФТТ. 2018. Т. 60. № 11. С. 2158; Temiryazev A.G., Temiryazeva M.P., Zdoroveyshchev A.V. // Phys. Solid State. 2018. V. 60. No. 11. P. 2200.
  10. Casiraghi A., Corte-León H., Vafaee M. et al. // Commun. Phys. 2019. V. 2. P. 145.
  11. Калентьева И.Л., Вихрова О.В., Данилов Ю.А. и др. // ФТТ. 2019. Т. 61. № 9. С. 1694; Kalentyeva I.L., Vikhrova O.V., Danilov Y.A. et al. // Phys. Solid State. 2019. V. 61. No. 9. P. 1646.
  12. Калентьева И.Л., Вихрова О.В., Данилов Ю.А. и др. // ФТТ. 2021. Т. 63. № 3. С. 324; Kalentyeva I.L., Vikhrova O.V., Danilov Y.A. et al. // Phys. Solid State. 2021. V. 63. No. 3. P. 384.
  13. Zdoroveyshchev A.V., Vikhrova O.V., Demina P.B. et al. // Int. J. Nanosci. 2019. V. 18. Art. No. 1940019.
  14. Abe M., Sugimoto Y., Custance O., Morita S. // Appl. Phys. Lett. 2005. V. 87. Art. No. 173503.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (2MB)
3.

Baixar (1MB)

Declaração de direitos autorais © А.Г. Темирязев, А.В. Здоровейщев, М.П. Темирязева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies