Solution of Bloch equations in weak fields for study in express mode

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is shown that to expand the functionality of express mode research into the state of condensed matter using the phenomenon of nuclear magnetic resonance in weak fields, it is necessary to solve the Bloch equations considering the features of recording its signal during field modulation. New relationships were obtained for the absorption signals υ and dispersion u, as well as the z-component of the magnetization, which made it possible to obtain a new dependence in explicit form for determining the critical points of the absorption signal (for the other two quantities, the derivation of these dependencies is similar to that presented) on the field parameters, the autodyne circuit and the relaxation times T1 and T2 of the medium under study. Based on the analysis of the obtained relationships, a new expression using u and υ is proposed to describe the recorded NMR signal using the modulation technique. Comparing the results of the NMR signal calculation with the experiment are presented. The necessity of implementing automatic adjustment of the modulating field amplitude in the design of a mobile NMR relaxometer to increase the signal-to-noise ratio and reduce the influence of modulation effects on the research results is substantiated.

About the authors

V. V. Davydov

Peter the Great St. Petersburg Polytechnic University; Saint Petersburg Electrotechnical University «LETI»

Saint-Petersburg, Russia; Saint-Petersburg, Russia

R. V. Davydov

Peter the Great St. Petersburg Polytechnic University; The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

Email: davydovroman@outlook.com
Saint-Petersburg, Russia; Saint-Petersburg, Russia

V. I. Dudkin

The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

Saint-Petersburg, Russia

A. A. Gol'dberg

Peter the Great St. Petersburg Polytechnic University

Saint-Petersburg, Russia

D. S. Provodin

Peter the Great St. Petersburg Polytechnic University

Saint-Petersburg, Russia

S. A. Klimova

Peter the Great St. Petersburg Polytechnic University; St. Petersburg State University

Saint-Petersburg, Russia; Saint-Petersburg, Russia

References

  1. Рауlova Z.S., Fedorov A.V., Davydov V.V. et al. // Photonics Russia. 2019. V. 13. No. 1. P. 42.
  2. Salikhov K.M. // JETP. 2022. V. 135. No. 5. P. 617.
  3. Sachenko A.V., Kostyvyv V.P., Bobyl A.V. et al. // Tech. Phys. Lett. 2018. V. 44. No. 10. P. 873.
  4. Davydov V., Gureeva I., Davydov R. et al. // Energies. 2022. V. 15. No. 2. Art. No. 457.
  5. Zaripov R.B., Ulanov V.A., and Kalinullin R.I. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1845.
  6. Salikhov K.M., Bakirov M.M., Zaripov R.B. et al. // Phys. Chem. Chem. Phys. 2023. V. 25. No. 27. P. 17966.
  7. Kamashev А.А., Leontyev A.V., Garifullin I.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No 4. P. 458.
  8. Kiryakova Т.М., Marusina М.У., Fedchenkov P.V. // Russ. Electron. J. Radiology. 2017. V. 7. No. 2. P. 117.
  9. Kashaev R.S., Kien N.C., Tung T.V. et al. // J. Appl. Spectrosc. 2019. V. 86. No. 5. P. 890.
  10. Validov A.A., Nasyrova M.I., Khabibullin R.R. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 452.
  11. Davydov V.V., Dudkin V.I., Karseev A.Y. et al. // J. Appl. Spectrosc. 2016. V. 82. No. 6. P. 1013.
  12. Gafurov M., Gareeva Y., and Yusupova N. // Nanomaterials. 2022. V. 12. No. 23. P. 4218.
  13. Zaripov R.B., Tarasov V.F., and Ulanov V.A. // JETP Lett. 2025. V. 121. No. 1. P. 47.
  14. Zaripov R.B., Khalinullin V.I., and Salikhov K.M. // Russ. J. Phys. Chem. B. 2021. V. 15. No. 3. P. 389.
  15. Kashaev R.S., Kien N.T., Tung C.V. et al. // Petroleum Chem. 2019. V. 59. Art. No. S21.
  16. Ulanov V.A., Zaripov R.B., Zainullin R.R. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1496.
  17. Eremina R., Gippius A., and Gafurov M. // Appl. Magn. Reson. 2023. V. 54. No. 4–5. P. 435.
  18. Davydov V.V., Moroz A.V., Myazin N.S. et al. // Opt. Spectr. 2020. V. 128. No. 10. P. 1678.
  19. Myazin N.S., Rud V.Yu., Yushkova V.V. et al. // Environmental Res. Eng. Manag. 2019. V. 75. No. 2. P. 28.
  20. Zaripov R.B., Khairutdinov I.T. // JETP Lett. 2023. V. 118. No. 11. P. 823.
  21. Alakshin E., Kondratyeva E., Gareeva A. et al. // Nanoscale. 2022. V. 14. No. 31. P. 11353.
  22. Alakshin E., Kondratyeva E., Nuzhina D. et al. // J. Nanopart. Res. 2018. V. 20. No. 12. P. 332.
  23. Kashaev R., Ahn N.D., Kozelkova V. et al. // Energies. 2023. V. 16. No. 3. Art. No. 1080.
  24. Kashaev R.S., Suntsov I.A., Tung C.V. et al. // J. Appl. Spectrosc. 2019. V. 86. No. 2. P. 289.
  25. Davydov V.V., Dudkin V.I., Karseev A.Y. // J. Appl. Spectrosc. 2015. V. 82. No. 5. P. 794.
  26. Chizhik V.I. Magnetic resonance and its applications. V. 15506. Switzerland: Springer Int. Publ., 2014.
  27. Giulotto L., Lanzi G., and Tosca L. // J. Chem. Phys. 1956. V. 24. P. 632.
  28. Giulotto L., Lanzi G., and Tosca L. // Archive Sci. 1957. V. 10. P. 250.
  29. Giulotto L., Lanzi G. // Archive Sci. 1957. V. 11. P. 250.
  30. Bloch F. // Phys. Rev. 1946. V. 70. No. 7. P. 460.
  31. Bloch F., Wangsness R.K. // Phys. Rev. 1950. V. 78. No. 1. P. 82.
  32. Abragam A. The principles of nuclear magnetism. Oxford UK: Oxford at the Clarendon Press, 1961.
  33. Leshe A. Nuclear induction. Berlin: Veb Deustscher Verlag Der Wissenschaften, 1963.
  34. Jacobsohn B.A., Wangsness R.K. // Phys. Rev. 1948. V. 73. No. 9. P. 942.
  35. Torrey H.C. // Phys. Rev. 1949. V. 76. No. 9. P. 1059.
  36. Masina E. A review on the Exponential-Integral special function and other strictly related special functions. Lectures from a seminar of Mathematical Physics. Bologna: University of Bologna Press, 2017.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).