Phase formation and structure in the solid solutions of the (1 – х)BiFeO3x/2PbFe1/2NB1/2O3x/2PbFe2/3W1/3O3 system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The solid solutions of the (1 – х)BiFeO3x/2PbFe1/2Nb1/2O3x/2PbFe2/3W1/3O3 system in the concentration range 0.05 ≤ х ≤ 0.50 were produced by solid state method and sintering using conventional ceramic technology. In the range 0.25 < x < 0.35, a morphotropic phase transition from the rhombohedral phase to the cubic phase was found. The difference in symmetry when “scaling” the material is shown. The influence of PbFe1/2Nb1/2O3 and PbFe2/3W1/3O3 on the grain structure formation was established.

About the authors

E. V. Glazunova

Institute of Physics, Southern Federal University

Author for correspondence.
Email: kate93g@mail.ru
Russia, 344090, Rostov-on-Don

L. A. Shilkina

Institute of Physics, Southern Federal University

Email: kate93g@mail.ru
Russia, 344090, Rostov-on-Don

A. V. Nagaenko

Institute of High Technologies and Piezotechnics, Southern Federal University

Email: kate93g@mail.ru
Russia, 344090, Rostov-on-Don

I. A. Verbenko

Institute of Physics, Southern Federal University

Email: kate93g@mail.ru
Russia, 344090, Rostov-on-Don

L. A. Reznichenko

Institute of Physics, Southern Federal University

Email: kate93g@mail.ru
Russia, 344090, Rostov-on-Don

References

  1. Фесенко Е.Г. Семейство перовскита и сегнетоэлектричество. М.: Атомиздат, 1972. 248 с.
  2. Phapale S., Mishra R., Das D. // J. Nucl. Mater. 2008. V. 373. P. 137.
  3. Carvalho T.T., Tavares P.B. // Mater. Lett. 2008. V. 62. P. 3984.
  4. Matteppenevar Sh., Rayaprol S., Angadi B., Sahoo B. // J. Alloys Compounds. 2016. V. 677. No. 8. P. 27.
  5. Matteppanavar S., Shivaraja I., Rayaprol S. et al. // J. Supercond. Nov. Magn. 2017. V. 30. No. 5. Art. No. 1317.
  6. Nagaraja T., Dadami S. T., Matteppanvar S. et al. // AIP Conf. Proc. 2018. V. 1942. Art. No. 140041.
  7. Nagaraja T., Dadami S.T., Basavaraj Angadi // AIP Conf. Proc. 2018. V. 1953. Art. No. 070013.
  8. Li H., Zhuang J., Bokov A.A. et al. // J. Eur. Ceram. 2021. V. 41. P. 310.
  9. Shivaraja I., Matteppanavar S., Deshpande S.K. et al. // J. Alloys Compounds. 2019. V. 800. P. 334.
  10. Zhu W.M., Ye Z.-G. // Ceram. Int. 2004. V. 30. P. 1435.
  11. Садыков Х.А., Вербенко И.А., Резниченко Л.А. и др. // Констр. композ. матер. 2013. № 2. С. 50.
  12. Powder diffraction file. Data card. Inorganic section. Set 42, card 181. Swarthmore: JCPDS, 1948.
  13. Powder diffraction file. Data card. Inorganic section. Set 20, card 836. Swarthmore: JCPDS, 1948.
  14. Вест А. Химия твердого тела теория и приложения. Часть 1. М.: Мир, 1988. 558 с.
  15. Галахов Ф.Н. Диаграммы состояния систем тугоплавких оксидов. Вып. 5. Ч. 4. Л.: Наука, 1988. 348 с.
  16. Галахов Ф.Н. Диаграммы состояния систем тугоплавких оксидов. Вып. 5. Ч. 2. Л.: Наука, 1986. 359 с.
  17. Ma J., Ma W., Li Q. et al. // J. Mater. Sci. Mater Electron. 2014. V. 25. P. 3695.
  18. Shi J., Chen X., Sun C. et al. // Ceram. Int. 2020. V. 46. P. 25731.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (645KB)
3.

Download (3MB)
4.

Download (63KB)

Copyright (c) 2023 Е.В. Глазунова, Л.А. Шилкина, А.В. Нагаенко, И.А. Вербенко, Л.А. Резниченко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies