Multiorder and structural mechanism of the LiRh2O4 tetragonal phase formation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of the group-theoretical analysis of phase transitions in the LiRh2O4 are presented. It is found that the critical irreducible representation inducing phase transitions and multiorder in this substance is the eight-dimensional representation \(~{{k}_{{11}}}{{{\text{\tau }}}_{5}} + {{k}_{{10}}}{{{\text{\tau }}}_{2}}\). It is shown that the multiorder and the structural mechanism of formation of the tetragonal phase of lithium rhodonite are related to the displacements of oxygen atoms, the tilts of the [RhO]6 octahedra, and the ordering of the rhodium t2g orbitals.

Sobre autores

M. Talanov

Southern Federal University

Autor responsável pela correspondência
Email: mvtalanov@gmail.com
Russia, 344090, Rostov-on-Don

V. Shirokov

Southern Science Center of the Russian Academy of Sciences

Email: mvtalanov@gmail.com
Russia, 344006, Rostov-on-Don

V. Talanov

Platov South-Russian State Polytechnic University

Email: mvtalanov@gmail.com
Russia, 346428, Novocherkassk

M. Aulov

Platov South-Russian State Polytechnic University

Email: mvtalanov@gmail.com
Russia, 346428, Novocherkassk

Bibliografia

  1. Canals B., Lacroix C. // Phys. Rev. Lett. 1998. V. 80. P. 2933.
  2. Verwey E.J.W. // Nature (London). 1939. V. 144. P. 327.
  3. Wright J.P., Attfield J.P, Radaelli P.G. // Phys. Rev. Lett. 2001. V.87. Art. No. 266401.
  4. Furubayashi T., Matsumoto T., Hagino T., Nagata S. // Phys. Soc. Japan. 1994. V. 63. P. 3333.
  5. Radaelli P.G., Horibe Y, Gutmann M.J. et al. // Nature. 2002. V. 416. P. 155.
  6. Matsuno K.I., Katsufuji T., Shigeo Mori S. et al. // J. Phys. Soc. Japan. 2001. V. 70. P. 1456.
  7. Horibe Y., Shingu M., Kurushima K. et al. // Phys. Rev. Lett. 2006. V. 96. Art. No. 086406.
  8. Talanov M.V., Shirokov V.B., Avakyan L.A. et al. // Acta Cryst. 2018. V. B74. P. 337.
  9. Kondo S., Johnston D.C., Swenson C.A. et al. // Phys. Rev. Lett. 1997. V. 78. P. 3729.
  10. Shiomi M., Kojima K., Katayama N. et al. // Phys. Rev. B. 2022. V. 105. Art. No. L041103.
  11. Nakatsu Y., Sekiyama A., Imada S. et al. // Phys. Rev. B. 2011. V. 83. Art. No. 115120.
  12. Knox K.R., Abeykoon A.M.M., Zheng H. et al. // Phys. Rev. B. 2013. V. 88. Art. No. 174114.
  13. Landau L.D., Lifshitz E.M. Statistical Physics. Part 1. Oxford: Pergamon Press, 1980.
  14. Sakhnenko V.P., Talanov V.M., Chechin G.M. // Fiz. Met. Metalloved. 1986. V. 62. P. 847.
  15. Talanov V.M., Shirokov V.B. // Acta Cryst. A. 2014. V. 70. P. 49.
  16. Talanov V.M., Shirokov V.B. // Acta Cryst. A. 2012. V. 68. P. 595.
  17. Talanov M.V., Talanov V.M. // Ferroelectrics 2019. V. 543. P. 1.
  18. Kovalev O.V. Representations of crystallographic space groups. Irreducible representations, induced representations and co-representations. Taylor and Francis Ltd., 1993.
  19. Miller S.C., Love W.F. Tables of irreducible representations of space groups and co-representations of magnetic space groups. Boulder: Pruett Press, 1967.
  20. Talanov M.V. // Acta Cryst. A. 2019. V. 75. P. 379.
  21. Talanov M.V., Talanov V.M. // Chem. Mater. 2021. V. 33. P. 2706.
  22. Aizu K. // J. Phys. Soc. Japan. 1969. V. 27. P. 387.
  23. Гуфан Ю.М. Структурные фазовые переходы. М.: Наука, 1982.
  24. Чандрасекар С. Жидкие кристаллы. М.: Мир, 1980. 344 с.
  25. Сиротин Ю.И., Шаскольская М.П. Основы кристаллофизики. М.: Наука, 1975. 680с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (287KB)
3.

Baixar (387KB)
4.

Baixar (169KB)

Declaração de direitos autorais © М.В. Таланов, В.Б. Широков, В.М. Таланов, М.С. Аулов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies