The energy position of size quantization levels in multiple HgCdTe quantum wells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The energy position of size quantization levels size levels in the multiple Hg0.3Cd0.7Te/HgTe quantum wells grown by molecular beam epitaxy on (013)GaAs substrate has been studied. The experimental and calculated values of the energy position of three size quantization levels are obtained.

About the authors

N. N. Mikhailov

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy
of Sciences

Author for correspondence.
Email: mikhailov@isp.nsc.ru
Russia, 630090, Novosibirsk

V. G. Remesnik

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy
of Sciences

Email: mikhailov@isp.nsc.ru
Russia, 630090, Novosibirsk

V. Ya. Aleshkin

Institute for Physics of Microstructures of the Russian Academy of Sciences

Email: mikhailov@isp.nsc.ru
Russia, 603950, Nizhny Novgorod

S. A. Dvoretsky

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy
of Sciences

Email: mikhailov@isp.nsc.ru
Russia, 630090, Novosibirsk

I. N. Uzhakov

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy
of Sciences

Email: mikhailov@isp.nsc.ru
Russia, 630090, Novosibirsk

V. A. Shvets

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy
of Sciences; Novosibirsk State University

Email: mikhailov@isp.nsc.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

References

  1. Lei W., Antoszewski J., Faraone L. // Appl. Phys. Rev. 2015. V. 2. Art. No. 041303.
  2. Bhan R.K., Dhar V. // Opto-Electron. Rev. 2019. V. 27. No. 2. P. 174.
  3. Rogalski A. // Rep. Prog. Phys. 2005. V. 68. No. 10. P. 2267.
  4. Capper P., Garland J. Mercury cadmium telluride. Growth, properties and applications. Chichester: John Wiley & Sons Ltd, 2011. P. 556.
  5. Erdem Arkun F., Edwall D.D., Ellsworth J. et al. // J. Electron. Mater. 2017. V. 46. No. 9. P. 5374.
  6. Reddy M., Peterson J.M., Vang T. et al. // J. Electron. Mater. 2011. V. 40. No. 8. P. 1706.
  7. Ziegler J., Wenisch J., Breiter R. et al. // J. Electron. Mater. 2014. V. 43. No. 8. P. 2935.
  8. Варавин В.С., Дворецкий С.А., Михайлов Н.Н. и др. // Автометрия. Т. 56. № 5. С. 12; Varavin V.S., Dvoretskii S.A., Mikhailov N.N. et al. // Optoelectron. Instrum. Data Process. 2020. V. 56. No. 5. P. 456.
  9. Schulman J.N., McGill T.C. // Appl. Phys. Lett. 1979. V. 34. No. 10. P. 663.
  10. Aleshkin V.Y., Dubinov A.A., Morozov S.V. et al. // Opt. Mater. Express. 2018. V. 8. No. 5. P. 1349.
  11. Ryzhii M., Otsuji T., Ryzhii V. et al. // Opto-Electron. Rev. 2019. V. 27. No. 2. P. 219.
  12. Zhou Y.D., Becker C.R., Selamet Y. et al. // J. Electron. Mater. 2003. V. 32. No. 7. P. 608.
  13. Grein C.H., Jung H., Singh R. et al. // J. Electron. Mater. 2005. V. 34. No. 6. P. 905.
  14. Becker C.R., Latussek V., Pfeuffer-Jeschke A. et al. // Phys. Rev. B. V. 62. No. 15. Art. No. 10353.
  15. Михайлов Н.Н., Швец В.А., Дворецкий С.А. и др. // Автометрия. 2003. Т. 39. № 2. С. 71.
  16. Mikhailov N.N., Smirnov R.N., Dvoretsky S.A. et al. // Int. J. Nanotechnol. 2006. V. 3. No. 1. P. 120.
  17. Сидоров Ю.Г., Дворецкий С.А., Михайлов Н.Н. и др. // Опт. журн. 2000. Т. 67. № 1. С. 39; Sidorov Yu.G., Dvoretski S.A., Mikhailov N.N. et al. // J. Opt. Technol. 2000. V. 67. No. 1. P. 31.
  18. Сидоров Ю.Г., Дворецкий С.А., Варавин В.С. и др. // ФТП. 2001. Т. 35. № 9. С. 1092; Sidorov Yu.G., Dvoretskii S.A., Varavin V.S. et al. // Semiconductors. 2001. V. 35. No. 9. P. 1045.
  19. Спесивцев Е.В., Рыхлицкий С.В., Швец В.А. // Автометрия. 2011. Т. 47. № 5. С. 5; Spesivtsev E.V., Rykhlitskii S.V., Shvets V.A. // Optoelectron. Instrument. Proс. 2011. V. 47. No. 5. P. 419.
  20. Ржанов А.В., Свиташев К.К., Мардежов А.С., Швец В.А. // ДАН. 1987. Т. 297. № 3. С. 604.
  21. Dvoretsky S., Mikhailov N., Sidorov Yu. et al. // J. Electron. Mater. V. 39. No. 7. P. 918.
  22. Швец В.А., Михайлов Н.Н., Икусов Д.Г. и др. // Опт. и спектроск. 2019. Т. 127. № 8. С. 318; Shvets V.A., Mikhailov N.N., Ikusov D.G. et al. // Opt. Spectrosс. 2019. V. 127. No. 2. P. 340.
  23. Швец В.А. // Опт. и спектроск. 2009. Т. 107. № 5. С. 822; Shvets V.A. // Opt. Spectrosс. 2009. V. 107. P. 780.
  24. Швец В.А., Азаров И.А., Спесивцев Е.В. и др. // ПТЭ. 2016. № 6. С. 87; Shvets V.A., Azarov I.A., Spesivtsev E.V. et al. // Instrum. Exp. Tech. 2016. V. 59. No. 6. P. 857.
  25. Zholudev M., Teppe F., Orlita M. et al. // Phys. Rev. B. 2012. V. 86. Art. No. 205420.
  26. Pfeuffer-Jeschke A. PhD thesis. Germany: Universität Würzburg. Physikalisches Institut. 2000.
  27. Minkov G.M., Aleshkin V.Ya., Rut O.E. et al. // Phys. Rev. B. 2017. V. 96. Art. No. 035310.
  28. Novik E.G., Pfeuffer-Jeschke A., Jungwirth T. et al. // Phys. Rev. B. 2005. V. 72. Art. No. 035321.
  29. Takita K., Onabe K., Tanaka S. // Phys. Stat. Sol. B. 1979. V. 92. P. 297.
  30. Иконников А.В., Бовкун Л.С., Румянцев В.В. и др. // ФТП. 2017. Т. 51. № 12. С. 1588; Ikonnikov A.V., Bovkun L.S., Rumyantsev V.V. et al. // Semiconductors. 2017. V. 51. No. 12. P. 1531.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (105KB)
3.

Download (149KB)
4.

Download (115KB)
5.

Download (122KB)
6.

Download (81KB)
7.

Download (103KB)

Copyright (c) 2023 Н.Н. Михайлов, В.Г. Ремесник, В.Я. Алешкин, С.А. Дворецкий, И.Н. Ужаков, В.А. Швец

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies