Modern approaches to the study of phenolic compounds of medicinal plant raw materials
- Authors: Radimich A.I.1, Saybel O.L.1, Dargaeva T.D.1, Rendyuk T.D.2
-
Affiliations:
- All-Russian Research Institute of Medicinal and Aromatic Plants
- Sechenov First Moscow State Medical University (Sechenov University)
- Issue: Vol 74, No 8 (2025)
- Pages: 5-13
- Section: Review
- URL: https://journals.rcsi.science/0367-3014/article/view/365714
- DOI: https://doi.org/10.29296/25419218-2025-08-01
- EDN: https://elibrary.ru/hstvtz
- ID: 365714
Cite item
Abstract
Introduction. Phenolic compounds are a group of secondary metabolites characterized by a significant variety of structures and biological activity. These substances are widely distributed among plants and are the subject of many studies aimed at the search and development of new medicines and preventive products.
The purpose of this work is to summarize and analyze literature data on modern methods of extraction, separation, identification of phenolic compounds, as well as their qualitative and quantitative analysis. According to the literature, maceration and circulating extraction are used for the extraction of phenolic compounds, as well as alternative methods such as ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, enzyme-assisted extraction, accelerated solvent extraction and extraction using high-voltage electric discharges.
Material and methods. Such methods as liquid-liquid extraction, solid-phase extraction, precipitation, centrifugation, filtration (micro-, ultra- and nanofiltration), crystallization and various chromatographic methods are used for purification and separation of substances. The identification of phenolic compounds is based on the determination of their physico-chemical characteristics obtained by NMR-spectroscopy, UV-, IR-, and mass spectrometry. In the qualitative and quantitative analysis of phenolic compounds, the use of high-performance liquid chromatography in combination with diode array detection and mass spectrometric detection shows the greatest efficiency. To assess the total content of phenolic compounds, a spectrophotometric method is used based on their interaction with Folin–Denis or Folin–Chocolteu reagents, and for flavonoids with an aluminum chloride solution.
Conclusion. Thus, modern phytochemical studies have a significant arsenal of extraction, separation and analysis methods that make it possible to efficiently and reliably determine the composition and content of phenolic compounds in plant raw materials. At the same time, despite the high informative value of the methods currently used, the fundamental stage of phytochemical research remains the development of an experimental methodology determined by the specifics of the structure and properties of the substances being determined, as well as related components.
Keywords
About the authors
Andrey Ivanovich Radimich
All-Russian Research Institute of Medicinal and Aromatic Plants
Author for correspondence.
Email: vilarnii.radimich@mail.ru
ORCID iD: 0000-0002-1139-8902
SPIN-code: 5452-2675
senior researcher at the department of chemistry and technology of natural compounds
Russian Federation, Grina str., 7, Moscow, 117213Olga Leonidovna Saybel
All-Russian Research Institute of Medicinal and Aromatic Plants
Email: olster@mail.ru
ORCID iD: 0000-0001-8059-5064
SPIN-code: 2842-4587
Doctor of pharmaceutical sciences. Head of the center for chemistry and pharmaceutical technology
Russian Federation, Grina str., 7, Moscow, 117213Tamara Darizhapovna Dargaeva
All-Russian Research Institute of Medicinal and Aromatic Plants
Email: dargaevatd@mail.ru
ORCID iD: 0000-0002-0722-9479
SPIN-code: 1621-1902
Doctor of pharmaceutical sciences. Chief Researcher, Department of chemistry and technology of natural compounds
Russian Federation, Grina str., 7, Moscow, 117213Tamara Danilovna Rendyuk
Sechenov First Moscow State Medical University (Sechenov University)
Email: aramat_17@mail.ru
ORCID iD: 0000-0002-0359-3847
SPIN-code: 7419-1424
Candidate of Pharmaceutical Sciences. Associate Professor, Department of Pharmaceutical Natural Sciences
Russian Federation, Trubetskaya str., 8/2, Mosсow, 119991References
- Kinghorn A.D. Pharmacognosy in the 21st century. J. of pharmacy and pharmacology. 2001; 53 (2): 135–48. doi: 10.1211/0022357011775334
- Balunas M.J., Kinghorn A.D. Drug discovery from medicinal plants. Life sciences. 2005; 78 (5): 431–41. doi: 10.1016/j.lfs.2005.09.012
- Abubakar A.R., Haque M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. of pharmacy & bioallied sciences. 2020; 12 (1): 1–10. doi: 10.4103/jpbs.JPBS_175_19
- Sasidharan S., Chen Y., Saravanan D. Extraction, isolation and characterization of bioactive compounds from plants' extracts. African journal of traditional, complementary, and alternative medicines. 2011; 8 (1): 1–10.
- Pandey A., Tripathi S. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J. Pharmacogn Phytochem. 2014; 2 (5): 115–9.
- Chuo S.C., Nasir H.M., Mohd-Setapar S.H., Mohamed S.F., Ahmad A., Wani W.A., Muddassir M., Alarifi A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit Rev Anal Chem. 2022; 52 (4): 667–96. doi: 10.1080/10408347.2020.1820851
- Вайнштейн В.А., Каухова И.Е. Двухфазная экстракция в получении лекарственных и косметических средств. СПб.: Проспект Науки, 2018; 104. [Vajnshtejn V.A., Kauxova I.E. Two-phase extraction in the production of medicines and cosmetics SPb.: Prospekt Nauki, 2018; 104 (in Russian)]
- Palos-Hernández A., González-Paramás A.M., Santos-Buelga C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules. 2024; 30 (1): 55. doi: 10.3390/molecules30010055
- Altemimi A., Lakhssassi N., Baharlouei A., Watson D.G., Lightfoot D.A. Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. J. of Pharmacognosy and Phytochemistry. 2017; 6 (1): 32–6. doi: 10.3390/plants6040042
- Azwanida N.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants. 2015; 4 (196): 2167–412. doi: 10.4172/2167-0412.1000196
- Kaufmann B. Christen P. Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochem Anal. 2002; 13 (2): 105–13. doi: 10.1002/pca.631
- Manzoor M.F., Hussain A., Sameen A., Sahar A., Khan S., Siddique R., Aadil R.M., Xu B. Novel extraction, rapid assessment and bioavailability improvement of quercetin: A review. Ultrason Sonochem. 2021; 78: 105686. doi: 10.1016/j.ultsonch.2021.105686.
- Hu Y., Yan B., Chen Zh.S., Wang L., Tang W., Huang C., Recent Technologies for the Extraction and Separation of Polyphenols in Different Plants: A Review. Journal of Renewable Materials, 2022; 10 (6): 1471–90. doi: 10.32604/jrm.2022.018811.
- Погорелов А.Г., Ипатова Л.Г., Погорелова В.Н., Панаит А.И., Станкевич А.А., Суворов О.А. Ультразвуковая экстракция пигментов из растительного сырья. Обзор. Химия растительного сырья. 2025; 1: 31–56. doi: 10.14258/jcprm.20250114798 [Pogorelov A.G., Ipatova L.G., Pogorelova V.N., Panait A.I., Stankevich A.A., Suvorov O.A. Ultrasonic extraction of pigments from plant raw materials. Review. Ximiya rastitel`nogo sy`r`ya. 2025; 1: 31–56. doi: 10.14258/jcprm.20250114798 (in Russian)]
- Bitwell Ch., Indra S.S., Luke C., Kakoma M.K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African. 2023; 19: e01585. doi: 10.1016/j.sciaf.2023.e01585
- Rifna E.J., Misra N.N., Dwivedi M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit Rev Food Sci Nutr. 2023; 63 (6): 719–52. doi: 10.1080/10408398.2021.1952923
- Chaves J.O., de Souza M.C., da Silva L.C., Lachos-Perez D., Torres-Mayanga P.C., Machado APdF, Forster-Carneiro T., Vázquez-Espinosa M., González-de-Peredo A.V., Barbero G.F., Rostagno M.A. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Frontiers in Chemistry. 2020; 8. doi: 10.3389/fchem.2020.507887
- Qiao L., Sun Y., Chen R., Fu Y., Zhang W., Li X., Chen J., Shen Y., Ye X. Sonochemical effects on 14 flavonoids common in citrus: relation to stability. PLoS One. 2014; 9 (2): e87766. doi: 10.1371/journal.pone.0087766
- Robak J, Kisiel W, Wolbiś M. Ultrasound-induced oxidation of flavonoids. Pol J. Pharmacol Pharm. 199; 43 (2): 145–52.
- Belwal T., Bhatt ID, Cravotto G. Effect of ultrasound on extraction and stability of polyphenols from Berberis jaeschkeana C.K. Schneid fruits: A comparative study. Sustainable Chemistry and Pharmacy. 2022; 27: 100649. doi: 10.1016/j.scp.2022.100649.
- Wang H, Yang L, Zu Y, Zhao X. Microwave-assisted simultaneous extraction of luteolin and apigenin from tree peony pod and evaluation of its antioxidant activity. The Scientific World J. 2014; 2014 (1): 506.
- Barros F., Dykes L., Awika J.M., Rooney L.W. Accelerated solvent extraction of phenolic compounds from sorghum brans. J. Cereal Sci. 2013; 58: 305–12. doi: 10.1016/j.jcs.2013.05.011.
- Xi J., He L., Yan L. Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge. Food Chem. 2017; 230: 354–61. doi: 10.1016/j.foodchem.2017.03.072
- Brianceau S., Turk M., Vitrac X., Vorobiev E. High Voltage Electric Discharges Assisted Extraction of Phenolic Compounds from Grape Stems: Effect of Processing Parameters on Flavan-3-Ols, Flavonols and Stilbenes Recovery. Innov. Food Sci. Emerg. Technol. 2016; 35: 67–74. doi: 10.1016/j.ifset.2016.04.006
- Khaw K.Y., Parat M.O., Shaw P.N., Falconer J.R. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules. 2017; 22 (7): 1186. doi: 10.3390/molecules22071186
- Nadar S.S., Rao P., Rathod V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res Int. 2018; 108: 309–30. doi: 10.1016/j.foodres.2018.03.006
- Rodríguez De Luna SL, Ramírez-Garza R.E., Serna Saldívar S.O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Scientific World J. 2020; 2020: 6792069. doi: 10.1155/2020/6792069
- Shi L., Zhao W., Yang Z., Subbiah V., Suleria HAR. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ Sci Pollut Res Int. 2022; 29 (54): 81112–29. doi: 10.1007/s11356-022-23337-6
- Doughari J.H. Phytochemicals: Extraction methods, basic structures, and mode of action as potential chemotherapeutic agents, phytochemicals – a global perspective of their role in nutrition and health. In: Venketeshwer R, editor. A Global Perspective of Their Role in Nutrition and Health. InTech; 2012. doi: 10.5772/26052
- Tenório C. J.L., Ferreira M. R.A., Lira L. A. Soares Recent advances on preparative LC approaches for polyphenol separation and purification: Their sources and main activities. Trends in Food Science & Technology. 2022; 128: 129–46, doi: 10.1016/j.tifs.2022.08.004
- Di Lorenzo C., Colombo F., Biella S., Stockley C., Restani, P. Polyphenols and human health: The role of bioavailability. Nutrients. 2021; 13 (1): 273.
- Sen,A.K., Sen D.B., Maheshwari R.A. Extraction, Isolation, and Quantitative Determination of Flavonoids by HPLC. In: Sen, S., Chakraborty, R. (eds) Herbal Medicine in India. Springer, Singapore. 2020. doi: 10.1007/978-981-13-7248-3_21
- Barry B., Dong M. Modern trends and best practices in mobile-phase selection in reversed-phase chromatography. 2018: 752–68.
- van Beek TA. Low-field benchtop NMR spectroscopy: status and prospects in natural product analysis. Phytochemical Analysis. 2021; 32: 24–37. doi: 10.1002/pca.2921
- Ивлеев В.А. Прокопьев А.С. Калабин Г.А. Количественная спектроскопия ЯМР в идентификации и контроле качества лекарственных препаратов и растительных биологических активных композиций. Вестник РУДН, серия Экология и безопасность жизнедеятельности. 2015; 1: 5–14. [Ivleev V.A. Prokop`ev A.S. Kalabin G.A. Quantitative NMR spectroscopy in the identification and quality control of pharmaceuticals and plant biologically active compositions Vestnik RUDN, seriya E`kologiya i bezopasnost` zhiznedeyatel`nosti. 2015; 1: 5–14 (in Russian)]
- Шейченко В.И., Шейченко О.П., Ануфриева В.В., Толкачев О.Н., Дюмаев К.М., Сокольская Т.А. Изучение состава фенольного компонента метаболома растений методом ЯМР. Химико-фармацевтический журнал. 2016; 50 (2): 16–22. doi: 10.30906/0023-1134-2016-50-2-16-22 [Shejchenko V.I., Shejchenko O.P., Anufrieva V.V., Tolkachev O.N., Dyumaev K.M., Sokol`skaya T.A. Study of the composition of the phenolic component of plant metabolomes using NMR. Ximiko-farmacevticheskij zhurnal. 2016; 50 (2): 16–22. doi: 10.30906/0023-1134-2016-50-2-16-22 (in Russian)]
- Johnson J.B., Walsh K.B., Naiker M., Ameer K. The Use of Infrared Spectroscopy for the Quantification of Bioactive Compounds in Food: A Review. Molecules. 2023; 28 (7): 3215. doi: 10.3390/molecules28073215
- Carazzone C, Mascherpa D, Gazzani G, Papetti A. Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem. 2013; 138 (2–3): 1062–71. doi: 10.1016/j.foodchem.2012.11.060
- He X.G. On-line identification of phytochemical constituents in botanical extracts by combined high-performance liquid chromatographic-diode array detection-mass spectrometric techniques. J. Chromatogr A. 2000; 880 (1–2): 203–32. doi: 10.1016/s0021-9673(00)00059-5
- Oudane B., Boudemagh D., Bounekhel M., Sobhic W., Vidal d,e М., Sylvain Broussy Isolation, characterization, antioxidant activity, and protein-precipitating capacity of the hydrolyzable tannin punicalagin from pomegranate yellow peel (Punica granatum). Journal of Molecular Structure. 2018; l.1156: 390–6. doi: 10.1016/j.molstruc.2017.11.129
- Sut S., Baldan V., Faggian M., Ferrarese I., Maccari E., Teobaldo E., Dall’Acqua S. The bark of Picea abies L., a waste from sawmill, as a source of valuable compounds: Phytochemical investigations and isolation of a novel pimarane and a stilbene derivative. Plants. 2021; 10 (10): 2106. doi: 10.3390/plants10102106
- Wolfender J.L., Queiroz E.F., Hostettmann K. Phytochemistry in the microgram domain – a LC-NMR perspective. Magn Reson Chem. 2005; 43 (9): 697–709. doi: 10.1002/mrc.1631.
- Wolfender J.L., Ndjoko K., Hostettmann K. The potential of LC-NMR in phytochemical analysis. Phytochem Anal. 2001; 12 (1): 2–22. doi: 10.1002/1099-1565(200101/02)12:1<2::AID-PCA552>3.0.CO;2-K
- Exarchou V., Krucker M., van Beek T.A., Vervoort J., Gerothanassis I.P., Albert K. LC-NMR coupling technology: recent advancements and applications in natural products analysis. Magn Reson Chem. 2005; 43 (9): 681–7. doi: 10.1002/mrc.1632
- Watanabe N., Niki E. Direct-Coupling of FT-NMR to High Performance Liquid Chromatography. Proc. Jpn. Acad. Ser. B. 1978; 54: 194–9. doi: 10.2183/pjab.54.194
- Gebretsadik T., Linert W., Thomas M. Berhanu T., Frew R. LC–NMR for Natural Product Analysis: A Journey from an Academic Curiosity to a Robust. Analytical Tool. Sci. 2021; 3 (1): 6. doi: 10.3390/sci3010006
- Николаева Т.Н., Лапшин П.В., Загоскина Н.В. Метод определения суммарного содержания фенольных соединений в растительных экстрактах с реактивом Фолина-Дениса и реактивом Фолина-Чокальтеу: модификация и сравнение. Химия растительного сырья. 2021; 2: 291–9. doi: 10.14258/jcprm.2021028250 [Nikolaeva T.N., Lapshin P.V., Zagoskina N.V. Method for determining the total content of phenolic compounds in plant extracts using the Folin-Denis reagent and the Folin-Chocalteu reagent: modification and comparison. Ximiya rastitel`nogo sy`r`ya. 2021; 2: 291–9. doi: 10.14258/jcprm.2021028250 (in Russian)]
Supplementary files
