Recent Progress in Some Issues of Divertor Physics under Detachment Conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The divertor operation in the detached plasma regime is necessary to reduce the loads on the divertor plates in the ITER and DEMO tokamaks to acceptable values. The results of the analysis for a number of effects that directly affect the operating window of the detachment and its stability are discussed: transverse heat transport in the divertor, radiation trapping, development of plasma instabilities, stability features of the double-null divertor, obtained using numerical simulations, including modeling in the transport code SOLPS4.3 and turbulent code BOUT++. The operation of a divertor with liquid metal plates is considered using lithium as an example. The verification issues for the computational model used for detachment modeling are discussed.

About the authors

A. A. Stepanenko

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: aastepanenko@mephi.ru
115409, Moscow, Russia

E. D. Marenkov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: aastepanenko@mephi.ru
115409, Moscow, Russia

A. A. Pshenov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); National Research Centre “Kurchatov Institute”

Email: aastepanenko@mephi.ru
115409, Moscow, Russia; 123182, Moscow, Russia

A. S. Kukushkin

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: aastepanenko@mephi.ru
115409, Moscow, Russia; 123182, Moscow, Russia

References

  1. Matthews G.F. // J. Nucl. Mater. 1995. V. 220. P. 104. https://doi.org/10.1016/0022-3115(94)00450-1
  2. Krasheninnikov S.I., Kukushkin A.S. // J. Plasma Phys. 2017. V. 83. P. 155830501. https://doi.org/10.1017/S0022377817000654
  3. Krasheninnikov S.I., Kukushkin A.S., Pshenov A.A. // Phys. Plasmas. 2016. V. 23. P. 055602. https://doi.org/10.1063/1.4948273
  4. Loarte A., Lipschultz B., Kukushkin A.S., Matthews G.F., Stangeby P.C., Asakura N., Counsell G.F., Federici G., Kallenbach A., Krieger K., Mahdavi A., Philipps V., Reiter D., Roth J., Strachan J., Whyte D., Doerner R., Eich T., Fundamenski W., Herrmann A., Fenstermacher M., Ghendrih P., Groth M., Kirschner A., Konoshima S., LaBombard B., Lang P., Leonard A.W., Monier-Garbet P., Neu R., Pacher H., Pegourie B., Pitts R.A., Takamura S., Terry J., Tsitrone E., ITPA Scrape-off Layer and Divertor Group // Nucl. Fusion. 2007. V. 47. P. S203. https://doi.org/10.1088/0029-5515/47/6/S04
  5. Theiler C., Lipschultz B., Harrison J., Labit B., Reimerdes H., Tsui C., Vijvers W.A.J., Boedo J.A., Duval B.P., Elmore S., Innocente P., Kruezi U., Lunt T., Maurizio R., Nespoli F., Sheikh U., Thornton A.J., van Limpt S.H.M., Verhaegh K., Vianello N., the TCV team, the EUROfusion MST1 team // Nucl. Fusion. 2017. V. 57 P. 072008. https://doi.org/10.1088/1741-4326/aa5fb7
  6. Kallenbach A., Bernert M., Beurskens M., Casali L., Dunne M., Eich T., Giannone L., Herrmann A., Maraschek M., Potzel S., Reimold F., Rohde V., Schweinzer J., Viezzer E., Wischmeier M., the ASDEX Upgrade Team // Nucl. Fusion. 2015. V. 55. P. 053026. https://doi.org/10.1088/0029-5515/55/5/053026
  7. McLean A.G., Leonard A.W., Makowski M.A., Groth M., Allen S.L., Boedo J.A., Bray B.D., Briesemeister A.R., Carlstrom T.N., Eldon D., Fenstermacher M.E., Hill D.N., Lasnier C.J., Liu C., Osborne T.H., Petrie T.W., Soukhanovskii V.A., Stangeby P.C., Tsui C., Unterberg E.A., Watkins J.G. // J. Nucl. Mater. 2015. V. 463 P. 533. https://doi.org/10.1016/j.jnucmat.2015.01.066
  8. Jaervinen A.E., Brezinsek S., Giroud C., Groth M., Guillemaut C., Belo P., Brix M., Corrigan G., Drewelow P., Harting D., Huber A., Lawson K.D., Lipschultz B., Maggi C.F., Matthews G.F., Meigs A.G., Moulton D., Stamp M.F., Wiesen S., JET Contributors // Plasma Phys. Control. Fusion. 2016. V. 58. P. 045011. https://doi.org/10.1088/0741-3335/58/4/045011
  9. Terry J.L., Lipschultz B., Pigarov A.Y., Krasheninnikov S.I., LaBombard B., Lumma D., Ohkawa H., Pappas D., Umansky M. // Phys. Plasmas. 1998. V. 5. P. 1759. https://doi.org/10.1063/1.872845
  10. Kotov V., Reiter D., Kukushkin A.S., Pacher H.D., Börner P., Wiesen S. // Contrib. to Plasma Phys. 2006. V. 46. P. 635. https://doi.org/10.1002/ctpp.200610056
  11. Kotov V., Reiter D., Pitts R.A., Jachmich S., Huber A., Coster D.P. // Plasma Phys. Control. Fusion. 2008. V. 50. P. 105012. https://doi.org/10.1088/0741-3335/50/10/105012
  12. Pshenov A.A., Kukushkin A.S., Marenkov E.D., Krasheninnikov S.I. // Nucl. Fusion. 2019. V. 59. P. 106025. https://doi.org/10.1088/1741-4326/ab3144
  13. Cook R.L., Torrance K.E. // ACM Siggraph Comp. Graph. 1981. V. 15. P. 307. https://doi.org/10.1145/965161.806819
  14. Carr M., Meakins A., Silburn S.A., Karhunen J., Ber-nert M., Bowman C., Callarelli A., Carvalho P., Giroud C., Harrison J.R., Henderson S.S., Huber A., Lipschultz B., Lunt T., Moulton D., Reimold F., ASDEX Upgrade Team, JET Contributors, MAST-Upgrade Team, EUROfusion MST1 Team // Rev. Sci. Instr. 2019. V. 90. P. 043504. https://doi.org/10.1063/1.5092781
  15. Pshenov A.A., Kukushkin A.S., Marenkov E.D., Gorbu-nov A.E. // Nucl. Mater. Energy. 2023. V. 34. P. 101342. https://doi.org/10.1016/j.nme.2022.101342
  16. Wiesen S., Reiter D., Kotov V., Baelmans M., Dekeyser W., Kukushkin A.S., Lisgo S.W., Pitts R.A., Rozhansky V., Saibene G., Veselova I., Voskoboynikov S. // J. Nucl. Mater. 2015. V. 463. P. 480. https://doi.org/10.1016/j.jnucmat.2014.10.012
  17. Verhaegh K., Lipschultz B., Duval B.P., Fil A., Wensing M., Bowman C., Gahle D.S. // Plasma Phys. Control. Fusion. 2019. V. 61. P. 125018. https://doi.org/10.1088/1361-6587/ab4f1e
  18. Terry J.L., Lipschultz B., Bonnin X., Boswell C., Krasheninnikov S.I., Pigarov A.Y., LaBombard B., Pappas D.A., Scott H.A. // J. Nucl. Mater. 1999. V. 266–269. P. 30. https://doi.org/10.1016/S0022-3115(98)00812-5
  19. Maggi C.F., Horton L.D., Corrigan G., Jäckel H.J., Loarte A., Monk R.D., Simonini R., Stamp M., Taroni A. // J. Nucl. Mater. 1999. V. 266–269. P. 867. https://doi.org/10.1016/S0022-3115(98)00845-9
  20. Lomanowski B., Groth M., Coffey I., Karhunen J., Mag-gi C.F., Meigs A.G., Menmuir S., O’Mullane M., JET contributors // Plasma Phys. Control. Fusion. 2020. V. 62. P. 065006. https://doi.org/10.1088/1361-6587/ab7432
  21. Goldston R.J., Reinke M.L., Schwartz J.A. // Plasma Phys. Control. Fusion. 2017. V. 59. P. 055015. https://doi.org/10.1088/1361-6587/aa5e6e
  22. Wischmeier M., ASDEX Upgrade team, JET EFDA contributors // J. Nucl. Mater. 2015. V. 463. P. 22. https://doi.org/10.1016/j.jnucmat.2014.12.078
  23. Krasheninnikov S.I., Batishcheva A.A., Simakov A.N. // Phys. Plasmas. 1998. V. 5. 6. P. 2297. https://doi.org/10.1063/1.872903
  24. Stepanenko A.A., Krasheninnikov S.I. // Phys. Plasmas. 2018. V. 25. 1. P. 012305. https://doi.org/10.1063/1.5010932
  25. Pshenov A.A., Kukushkin A.S., Krasheninnikov S.I. // Plasma Phys. Reports. 2020. V. 46. P. 587.https://doi.org/10.1134/S1063780X20060070
  26. Reimold F., Wischmeier M., Potzel S., Guimarais L., Reiter D., Bernert M., Dunne M., Lunt T. and the ASDEX Upgrade Team // Nucl. Mater. Energy. 2017. Vol. 12. P. 193. https://doi.org/10.1016/j.nme.2017.01.010
  27. Wensing M., Reimerdes H., Fevrier O., Colandrea C., Martinelli L., Verhaegh K., Bagnato F., Blanchard P., Vincent B., Perek A., Gorno S., de Oliveira H., Thei-ler C., Duval B.P., Tsui C.K., Baquero-Ruiz M., Wischmeier M., TCV Team and MST1 Team // Phys. Plasmas. 2021. V. 28. P. 082508. https://doi.org/10.1063/5.0056216
  28. Senichenkov I.Y., Kaveeva E.G., Sytova E.A., Rozhan-sky V.A., Voskoboynikov S.P., Veselova I.Yu., Shtyrkhu-nov N.V., Coster D.P., Bonnin X., Reimold F. and the A-SDEX Upgrade Team // Plasma Phys. Control. Fusion. 2019. Vol. 61. P. 045013. https://doi.org/10.1088/1361-6587/ab04d0
  29. Pericoli Ridolfini V., Ambrosino R., Chmielewski P., Crisanti F., Poradziński M., Zagórski R. // Nucl. Fusion. 2019. V. 59. P. 126008. https://doi.org/10.1088/1741-4326/ab3969
  30. Pericoli Ridolfini V., Ambrosino R., Mastrostefano S., Chmielewski P., Poradziński M., Zagórski R. // Phys. Plasmas. 2019. V. 26. P. 012507. https://doi.org/10.1063/1.5055017
  31. Doerner R.P., Baldwin M.J., Conn R.W., Grossman A.A., Luckhardt S.C., Seraydarian R., Tynan G.R., Whyte D.G. // J. Nucl. Mater. 2001. V. 290–293. P. 166. https://doi.org/10.1016/S0022-3115(00)00568-7
  32. Allain J.P., Nieto M., Coventry M.D., Stubbers R., Ru-zic D.N. // Fusion Eng. Des. 2004. V. 72. P. 93. https://doi.org/10.1016/j.fusengdes.2004.07.006
  33. Morgan T.W., Rindt P., Van Eden G.G., Kvon V., Jawork-si M.A., Cardozo N.J.L. // Plasma Phys. Control. Fusion. 2018. V. 60. P. 016022. https://doi.org/10.1088/1361-6587/aa86cd
  34. Van Eden G.G., Morgan T.W., Aussems D.U.B., Van Den Berg M.A., Bystrov K., Van De Sanden M.C.M. // Phys. Rev. Lett. 2016. V. 116. P. 135002. https://doi.org/10.1103/PhysRevLett.116.135002
  35. Van Eden G.G., Kvon V., Van De Sanden M.C.M., Morgan T.W. // Nat. Commun. 2017. V. 8. P. 192. https://doi.org/10.1038/s41467-017-00288-y
  36. Skovorodin D.I., Pshenov A.A., Arakcheev A.S., Eksae-va E.A., Marenkov E.D., Krasheninnikov S.I. // Phys. Plasmas. 2016. V. 23. P. 022501. https://doi.org/10.1063/1.4939537
  37. Marenkov E., Pshenov A. // Nucl. Fusion. 2020. V. 60. P. 026011. https://doi.org/10.1088/1741-4326/ab5eb5
  38. Lunsford R., Bortolon A., Roquemore A.L., Mansfield D.K., Nagy A., Maingi R., Parks P.B., Jackson G., Gilson E., Chrobak C.P. // Fusion Eng. Des. 2016. V. 112. P. 621. https://doi.org/10.1016/j.fusengdes.2016.04.041
  39. Osborne T.H., Jackson G.L., Yan Z., Maingi R., Mansfield D.K., Grierson B.A., Chrobak C.P., McLean A.G., Allen S.L., Battaglia D.J., Briesemeister A.R., Fenstermacher M.E., McKee G.R., Snyder P.B. and the DIII-D Team // Nucl. Fusion 2015. V. 55. P. 063018. https://doi.org/10.1088/0029-5515/55/6/063018
  40. Bortolon A., Maingi R., Mansfield D.K., Nagy A., Roquemore A.L., Baylor L.R., Commaux N., Jackson G.L., Gilson E.P., Lunsford R., Parks P.B., Chrystal C., Grier-son B.A., Groebner R., Haskey S.R., Makowski M.J., Lasnier C.J., Nazikian R., Osborne T., Shiraki D., Van Zeeland M.A. // Nucl. Fusion. 2016. V. 56. P. 056008. https://doi.org/10.1088/0029-5515/56/5/056008
  41. Sun Z., Lunsford R., Maingi R., Hu J.S., Mansfield D.K., Diallo A., Tritz K., Canik J., Wang Z., Andruczyk D., Wang Y.M., Zuo G.Z., Huang M., Xu W., Meng X.C. // IEEE Trans. Plasma Science. 2018. V. 46. P. 1076. https://doi.org/10.1109/TPS.2017.2773095
  42. Mansfield D.K., Roquemore A.L., Carroll T., Sun Z., Hu J.S., Zhang L., Liang Y.F., Gong X.Z., Li J.G., Guo G.Z., Zuo H.Y., Parks P., Wu W., Maingi R. // N-ucl. Fusion. 2013. V. 53. P. 113023. https://doi.org/10.1088/0029-5515/53/11/113023
  43. Mansfield D.K., Kugel H.W., Maingi R., Bell M.G., Bell R., Kaita R., Kallman J., Kaye S., LeBlanc B., Mueller D., Paul S., Raman R., Roquemore L., Sabbagh S., Schneider H., Skinner C.H., Soukhanovskii V., Timberlake J., Wilgen J., Zakharov L. // J. Nucl. Mater. 2009. V. 390–391. P. 764. https://doi.org/10.1016/j.jnucmat.2009.01.203
  44. Maingi R., Boyle D.P., Canik J.M., Kaye S.M., Skin-ner C.H., Allain J.P., Bell M.G., Bell R.E., Gerhardt S.P., Gray T.K., Jaworski M.A., Kaita R., Kugel H.W., LeBlanc B.P., Manickam J., Mansfield D.K., Menard J.E., Osborne T.H., Raman R., Roquemore A.L., Sabbagh S.A., Snyder P.B., Soukhanovskii V.A. // Nucl. Fusion. 2012. V. 52. P. 083001. https://doi.org/10.1088/0029-5515/52/8/083001
  45. Maingi R., Hu J.S., Sun Z., Diallo A., Tritz K., Qian Y.Z., Xu W., Zuo G.Z., Li C.L., Huang M., Ye Y., Bortolon A., Gilson E.P., Lunsford R., Mansfield D.K., Nagy A., Qian J.P., Gong X.Z. // J. Fusion Energy. 2020. V. 39. P. 429–435. https://doi.org/10.1007/s10894-020-00256-3
  46. Abrams T., Jaworski M.A., Chen M., Carter E.A., Kaita R., Stotler D.P., De Temmerman G., Morgan T.W., Van Den Berg M.A., Van Der Meiden H.J. // Nucl. Fusion. 2016. V. 56. P. 016022. https://doi.org/10.1088/0029-5515/56/1/016022
  47. Doerner R.P., Krasheninnikov S.I., Schmid K. // J. Appl. Phys. 2004. V. 95. P. 4471. https://doi.org/10.1063/1.1687038
  48. Doerner R.P., Baldwin M.J., Krasheninnikov S.I., Schmid K. // J. Nucl. Mater. 2005. V. 337. P. 877. https://doi.org/10.1016/j.jnucmat.2004.09.025
  49. Allain J.P., Coventry M.D., Ruzic D.N. // Phys. Rev. B. 2007. V. 76. P. 205434. https://doi.org/10.1103/PhysRevB.76.205434
  50. Fussmann G., Engelhardt W., Naujoks D. // Plasma physics and controlled nuclear fusion research 1994. V. 2. Proceedings of the fifteenth international conference. 1995. P. 143.
  51. Rindt P., Morgan T.W., Jaworski M.A., Lopes Cardozo N.J. // Nucl. Fusion. 2018. V. 58. P. 104002. https://doi.org/10.1088/1741-4326/aad290
  52. Marenkov E., Pshenov A. // Nucl. Fusion. 2020. V. 60. P. 026011. https://doi.org/10.1088/1741-4326/ab5eb5
  53. Rindt P., Morgan T.W., van Eden G.G., Jaworski M.A., Lopes Cardozo N.J. // Nucl. Fusion. 2019. V. 59. P. 056003. https://doi.org/10.1088/1741-4326/ab0560
  54. Marenkov E.D., Pshenov A.A., Kukushkin A.S. // Phys. Plasmas. 2020. V. 27. P. 062514. https://doi.org/10.1063/5.0006509
  55. Goldston R.J., Hakim A., Hammett G.W., Jaworski M.A., Schwartz J. // Nucl. Mater. Energy. 2017. Vol. 12. P. 1118. https://doi.org/10.1016/j.nme.2017.03.020
  56. Rindt P., van den Eijnden J.L., Morgan T.W., Lopes Cardozo N.J. // Fusion Eng. Des. 2021. V. 173. P. 112812. https://doi.org/10.1016/j.fusengdes.2021.112812
  57. Pshenov A.A., Kukushkin A.S. // Plasma Phys. Reports. 2018. V. 44. P. 641. https://doi.org/10.1134/S1063780X18070048
  58. Marenkov E.D., Pshenov A.A., Kukushkin A.S. // Plasma Phys. Control. Fusion. 2022. V. 64. P. 115006. https://doi.org/10.1088/1361-6587/ac91a3
  59. Pericoli Ridolfini V., Chmielewski P., Ivanova-Stanik I., Poradziński M., Zagórski R., Ambrosino R., Crisanti F. // Phys. Plasmas. 2020. V. 27. P. 112506. https://doi.org/10.1063/5.0012743
  60. Nallo G.F., Moscheni M., Subba F., Zanino R. // Nucl. Fusion. 2022. V. 62. P. 036008. https://doi.org/10.1088/1741-4326/ac4867
  61. Marenkov E.D., Kukushkin A.S., Pshenov A.A. // Nucl. Fusion. 2021. V. 61. P. 034001. https://doi.org/10.1088/1741-4326/abd642
  62. Rognlien T.D., Rensink M.E., Emdee E., Goldston R.J., Schwartz J., Stotler D.P. // Nucl. Mater. Energy. 2019. V. 18. P 233–238. https://doi.org/10.1016/j.nme.2018.12.030
  63. Emmert G.A., Donhowe J.M., Mense A.T. // J. Nucl. Mater. 1974. V. 53. P. 39. https://doi.org/10.1016/0022-3115(74)90217-7
  64. Eich T., Kallenbach A., Fundamenski W., Herrmann A., Naulin V. // J. Nucl. Mater. 2009. V. 390–391. P. 760. https://doi.org/10.1016/j.jnucmat.2009.01.202
  65. Rozhansky V., Molchanov P., Veselova I., Voskoboyni-kov S., Kirk A., Coster D. // Nucl. Fusion. 2012. V. 52. P. 103017. https://doi.org/10.1088/0029-5515/52/10/103017
  66. Kuteev B.V., Shpanskiy Y.S. // Nucl. Fusion. 2017. V. 57. P. 076039. https://doi.org/10.1088/1741-4326/aa6dcb
  67. Kukushkin A.S., Krasheninnikov S.I. // Plasma Phys. Control. Fusion. 2019. V. 61. P. 074001. https://doi.org/10.1088/1361-6587/ab1bba
  68. Kukushkin A.S. // Plasma Phys. Reports. 2019. V. 45. P. 637. https://doi.org/10.1134/S1063780X19070067
  69. Neuhauser J., Schneider W., Wunderlich R. // Nucl. Fusion. 1986. V. 26. P. 1679. https://doi.org/10.1088/0029-5515/26/12/009
  70. Smirnov R.D., Kukushkin A.S., Krasheninnikov S.I., Pigarov A.Yu., and Rognlien T.D. // Phys. Plasmas. 2016. V. 23. P. 012503. https://doi.org/10.1063/1.4939539
  71. Loarte A., Monk R.D., Kukushkin A.S., Righi E., Campbell D.J., Conway G.D., and Maggi C.F. // Phys. Rev. Letters. 1999. V. 83. P. 3657. https://doi.org/10.1103/PhysRevLett.83.3657
  72. Heinrich P., Manz P., Bernert M., Birkenmeier G., Bri-da D., Cavedon M., David P., Griener M., Haas G., Happel T., Plank U., Reimold F., Stroth U., Wischmeier M., Zhang W. and ASDEX Upgrade team. // Nucl. Fusion. 2020. V. 60. P. 076013. https://doi.org/10.1088/1741-4326/ab8a05
  73. Schneider R., Bonnin X., Borrass K., Coster D.P., Kas-telewicz H., Reiter D., Rozhansky V.A., Braams B.J. // Contrib. Plasma Physics. 2006. V. 46. P. 3. https://doi.org/10.1002/ctpp.200610001
  74. Lipschultz B. // J. Nucl. Mater. 1987. V. 145–147. P. 15. https://doi.org/10.1016/0022-3115(87)90306-0
  75. Drake J.F. // Phys. Fluids. 1987. V. 30. P. 2429. https://doi.org/10.1063/1.866133
  76. Chen X.P., Shi B.R., Gao Q.D. // Phys. Plasmas. 1996. V. 3. P. 4507. https://doi.org/10.1063/1.871588
  77. McCarthy D., Drake J.F. // Phys. Fluids B: Plasma Phys. 1991. V. 3. P. 22. https://doi.org/10.1063/1.859941
  78. Morozov D.Kh., Herrera J.J.E. // Phys. Rev. Lett. 1996. V. 76. P. 760. https://doi.org/10.1103/PhysRevLett.76.760
  79. Pshenov A.A., Morozov D.Kh. // Contrib. Plasma Physics. 2010. V. 50. P. 380. https://doi.org/10.1002/ctpp.201010062
  80. Kukushkin A. // Third IAEA Technical Meeting on Divertor Concepts. Report of Abstracts. 2019. V. 52. P. 44.
  81. Sun Z., Diallo A., Maingi R., Qian Y.Z., Tritz K., Wang Y.F., Wang Y.M., Bortolon A., Nagy A., Zhang L., Duan Y.M., Ye Y., Zhao H.L., Wang H.Q., Gu X., Zuo G.Z., Xu W., Huang M., Li C.L., Meng X.C., Zhou C., Liu H.Q., Zang Q., Wang L., Qian J.P., Xu G.S., Gong X.Z., Hu J.S., EAST team // Nucl. Fusion. 2021. V. 61. P. 014002. https://doi.org/10.1088/1741-4326/abc763
  82. Ye Y., Xu G.S., Tao Y.Q., Chen R., Wang L., Guo H.Y., Wang H.Q., Li K.D., Meng L.Y., Yang Q.Q., Wang Y.F., Lin X., Sun Z., Wu K., Yuan Q.P., Xu J.C., Duan Y.M., Zhang L., Liu H.Q., Wan B.N. // Nucl. Fusion. 2021. V. 61. P. 116032.https://doi.org/10.1088/1741-4326/ac26eb
  83. Potzel S., Wischmeier M., Bernert M., Dux R., Müller H.W., Scarabosio A. // Nucl. Fusion. 2014. V. 54. P. 013001. https://doi.org/10.1088/0029-5515/54/1/013001
  84. Wang H.Q., Watkins J.G., Guo H.Y., Leonard A.W., Thomas D.M., Stepanenko A.A., Krasheninnikov S.I. // Phys. Plasmas. 2020. V. 27. P. 022504. https://doi.org/10.1063/1.5140354
  85. Krasheninnikov S.I., Smolyakov A.I. // Phys. Plasmas. 2016. V. 23. P. 092505. https://doi.org/10.1063/1.4962568
  86. Stepanenko A.A., Wang H.Q. // Plasma Phys. Reports. 2019. V. 45. P. 627. https://doi.org/10.1134/S1063780X19070110
  87. Stepanenko A.A., Wang H.Q., Krasheninnikov S.I. // Phys. Plasmas. 2019. V. 26. P. 122303. https://doi.org/10.1063/1.5123388
  88. Stepanenko A.A., Wang H.Q., Krasheninnikov S.I. // The 46th European Physical Society Conference on Plasma Physics. 2019. http://ocs.ciemat.es/EPS2019ABS/pdf/O2.106.pdf
  89. Stepanenko A.A. Effects of magnetic geometry on dynamics of current-convective turbulence in tokamak divertor plasma // Phys. Plasmas. 2022. V. 29. P. 122309. https://doi.org/10.1063/5.0119629
  90. Petrov V.G. // Proc. of the International Symposium on Plasma Wall Interaction. 1977. P. 229.
  91. Nedospasov A.V. // Contrib. Plasma Physics. 1996. V. 36. P. 197.
  92. Rozhansky V., Kaveeva E., Senichenkov I., Sytova E., Veselova I., Voskoboynikov S., Coster D. // Contrib. Plasma Physics. 2018. V. 58. P. 540. https://doi.org/10.1002/ctpp.201700119
  93. Manz P., Potzel S., Reimold F., Wischmeier M., Team Asdex Upgrade // Nucl. Mat. Energy. 2017. V. 12. P. 1152. https://doi.org/10.1016/j.nme.2016.10.002
  94. Krasheninnikov S.I. // Phys. Plasmas. 1997. V. 4. P. 3741. https://doi.org/10.1063/1.872539
  95. Krasheninnikov S.I., Rensink M., Rognlien T.D., Ku-kushkin A.S., Goetz J.A., LaBombard B., Lipschultz B., Terry J.L., Umansky M. // J. Nucl. Mater. 1999. V. 266–269. P. 251. https://doi.org/10.1016/S0022-3115(98)00577-7
  96. Smirnov R.D., Kukushkin A.S., Krasheninnikov S.I., Pigarov A.Yu., Rognlien T.D. // Phys. Plasmas. 2016. V. 23. P. 012503. https://doi.org/10.1063/1.4939539
  97. Krasheninnikov S.I., Soboleva T.K. // Phys. Plasmas. 2006. V. 13. 9. P. 094502. https://doi.org/10.1063/1.2344931
  98. Marenkov E.D., Krasheninnikov S.I., Pisarev A.A., Tsvetkov I.V. // Plasma Phys. Reports. 2012. V. 38. P. 352. https://doi.org/10.1134/S1063780X1203004X
  99. Tokar M.Z., Kelly F.A. // Phys. Plasmas. 2003. V. 10. P. 4378. https://doi.org/10.1063/1.1613963
  100. Pigarov A.Y., Krasheninnikov S.I. // J. Nucl. Mater. 2009. V. 390–391. P. 192. https://doi.org/10.1016/j.jnucmat.2009.01.165
  101. Halpern F.D., Ricci P., Jolliet S., Loizu J., Morales J., Mosetto A., Musil F., Riva F., Tran T.M., Wersal C. // J. Comput. Phys. 2016. V. 315. P. 388. https://doi.org/10.1016/j.jcp.2016.03.040
  102. Stegmeir A., Coster D., Ross A., Maj O., Lackner K., Poli E. // Plasma Phys. Control. Fusion. 2018. V. 60. P. 035005. https://doi.org/10.1088/1361-6587/aaa373
  103. Tamain P., Bufferand H., Ciraolo G., Colin C., Galas-si D., Ghendrih Ph., Schwander F., Serre E. // J. Comput. Phys. 2016. V. 321. P. 606. https://doi.org/10.1016/j.jcp.2016.05.038
  104. Dudson B.D., Umansky M.V., Xu X.Q., Snyder P.B., Wilson H.R. // Comput. Phys. Commun. 2009. V. 180. P. 1467. https://doi.org/10.1016/j.cpc.2009.03.008
  105. Umansky M.V., Rognlien T.D., Xu X.Q., Cohen R.H., Nevins W.M. // Contrib. Plasma Physics. 2004. V. 44. P. 182. https://doi.org/10.1002/ctpp.200410025
  106. Umansky M.V., Rognlien T.D., Xu X.Q. // J. Nucl. Mater. 2005. V. 337–339. P. 266. https://doi.org/10.1016/j.jnucmat.2004.10.021
  107. Riva F., Militello F., Elmore S., Omotani J.T., Dudson B., Walkden N.R. // Plasma Phys. Control. Fusion. 2019. V. 61. P. 095013. https://doi.org/10.1088/1361-6587/ab3561
  108. Walkden N.R., Riva F., Dudson B.D., Ham C., Militel-lo F., Moulton D., Nicholas T., Omotani J.T. // Nucl. Mater. Energy. 2019. V. 18. P. 111. https://doi.org/10.1016/j.nme.2018.12.005
  109. Walkden N., Riva F., Harrison J., Militello F., Farley T., Omotani J., Lipschultz B. // Commun. Phys. 2022. V. 5. P. 139. https://doi.org/10.1038/s42005-022-00906-2
  110. Chen B., Xu X.Q., Xia T.Y., Li N.M., Porkolab M., Edlund E., LaBombard B., Terry J., Hughes J.W., Ye M.Y., Wan Y.X. // Phys. Plasmas. 2018. V. 25. P. 055905. https://doi.org/10.1063/1.5016582
  111. Deng G.Z., Xu X.Q., Li N.M., Liu X.J., Liu X., Xu J.C., Feng W., Liu J.B., Gao S.L., Liu S.C., Xia T.Y., Wang L. // Nucl. Fusion. 2020. V. 60. P. 082007. https://doi.org/10.1088/1741-4326/ab70d6
  112. Wang X., Xu X., Snyder P.B., Li Z. // Nucl. Fusion. 2022. V. 62. P. 026024. https://doi.org/10.1088/1741-4326/ac3b8a
  113. Xu X.Q., Li N.M., Li Z.Y., Chen B., Xia T.Y., Tang T.F., Zhu B., Chan V.S. // Nucl. Fusion. 2019. V. 59. P. 126039. https://doi.org/10.1088/1741-4326/ab430d
  114. Goldston R.J. // Nucl. Fusion. 2011. V. 52. P. 013009. https://doi.org/10.1088/0029-5515/52/1/013009
  115. Eich T., Leonard W., Pitts R.A., Fundamenski W., Goldston R.J., Gray T.K., Herrmann A., Kirk A., Kallen-bach A., Kardaun O., Kukushkin A.S., LaBombard B., Maingi R., Makowski M.A., Scarabosio A., Sieglin B., Terry J., Thornton A. and ASDEX Upgrade Team and JET EFDA Contributors // Nucl. Fusion. 2013. V. 53. P. 093031. https://doi.org/10.1088/0029-5515/53/9/093031
  116. Chang C.S., Ku S., Loarte A., Parail V., Köchl F., Romanelli M., Maingi R., Ahn J.-W., Gray T., Hughes J. // Nucl. Fusion. 2017. V. 57. P. 116023. https://doi.org/10.1088/1741-4326/aa7efb
  117. Chang C.S., Churchill M., Hager R., Ku S., Maingi R., Menard J., Loarte A., Pitts R., Parail V., Romanelli M., Köchl F. // 27th IAEA Fusion Energy Conference, CN. 2018. V. 258. P7. URL https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/FEC%202018/fec2018-preprints/preprint0304.pdf
  118. Chang C.S., Ku S., Hager R., Churchill R.M., Hug-hes J., Koechl F., Loarte A., Parail V. and Pitts R.A. // Phys. Plasmas. 2021. V. 28. P. 022501. https://doi.org/10.1063/5.0027637
  119. Rozhansky V., Kaveeva E., Molchanov P., Veselova I., Voskoboynikov S., Coster D., Counsell G., Kirk A., Lis-go S., the ASDEX-Upgrade Team, the MAST Team // Nucl. Fusion. 2009. V. 49. P. 025007. https://doi.org/10.1088/0029-5515/49/2/025007
  120. Kukushkin A.S., Pacher H.D., Kotov V., Pacher G.W., Reiter D. // Fusion Eng. Des. 2011. V. 86. P. 2865. https://doi.org/10.1016/j.fusengdes.2011.06.009
  121. Krasheninnikov S.I., Kukushkin A.S., Pshenov A.A. // Plasma Phys. Control. Fusion. 2022. V. 64. P. 125011. https://doi.org/10.1088/1361-6587/ac9b8e
  122. Krasheninnikov S.I., Kukushkin A.S. // Phys. Plasmas. 2022. V. 29. P. 122502. https://doi.org/10.1063/5.0129131
  123. Krasheninnikov S., Smolyakov A., Kukushkin A. On the Edge of Magnetic Fusion Devices. Switzerland: Springer Nature AG, 2020. https://doi.org/10.1007/978-3-030-49594-7
  124. Krasheninnikov S.I., Kukushkin A.S., Pistunovich V.I., Pozharov V.A. // Nucl. Fusion. 1987. V. 27. P. 1805. https://doi.org/10.1088/0029-5515/27/11/006
  125. Pshenov A.A., Kukushkin A.S., Krasheninnikov S.I. // Nucl. Mater. Energy. 2017. V. 12. P. 948. https://doi.org/10.1016/j.nme.2017.03.019
  126. Pshenov A.A., Kukushkin A.S., Krasheninnikov S.I. // Phys. Plasmas. 2017. V. 24. P. 072508. https://doi.org/10.1063/1.4991402

Supplementary files


Copyright (c) 2023 А.А. Степаненко, Е.Д. Маренков, А.А. Пшенов, А.С. Кукушкин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies