Adaptation of General Concepts of Software Testing to Neural Networks


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of testing and debugging learning neural network systems is discussed. Differences of these systems from program implementations of algorithms from the point of view of testing are noted. Requirements to the testing systems are identified. Specific features of various neural network models from the point of view of selection of the testing technique and determination of tested parameters are analyzed. It is discussed how to get rid of the noted drawbacks of the systems under study. The discussion is illustrated by an example.

作者简介

Yu. Karpov

Luxoft Professional LLC

编辑信件的主要联系方式.
Email: y.l.karpov@yandex.ru
俄罗斯联邦, 1-i Volokolamskii proezd 10, Moscow, 123060

L. Karpov

V.P. Ivannikov Institute for System Programming, Russian Academy of Sciences; Moscow State University

编辑信件的主要联系方式.
Email: mak@ispras.ru
俄罗斯联邦, ul. Solzhenitsyna 25, Moscow, 109004; Moscow, 119991

Yu. Smetanin

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: ysmetanin@rambler.ru
俄罗斯联邦, ul. Vavilova 44, korp. 2, Moscow, 119333; Institutskii proezd 9, Dolgoprudnyi, Moscow oblast, 141700

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018