Adaptation of General Concepts of Software Testing to Neural Networks


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of testing and debugging learning neural network systems is discussed. Differences of these systems from program implementations of algorithms from the point of view of testing are noted. Requirements to the testing systems are identified. Specific features of various neural network models from the point of view of selection of the testing technique and determination of tested parameters are analyzed. It is discussed how to get rid of the noted drawbacks of the systems under study. The discussion is illustrated by an example.

Sobre autores

Yu. Karpov

Luxoft Professional LLC

Autor responsável pela correspondência
Email: y.l.karpov@yandex.ru
Rússia, 1-i Volokolamskii proezd 10, Moscow, 123060

L. Karpov

V.P. Ivannikov Institute for System Programming, Russian Academy of Sciences; Moscow State University

Autor responsável pela correspondência
Email: mak@ispras.ru
Rússia, ul. Solzhenitsyna 25, Moscow, 109004; Moscow, 119991

Yu. Smetanin

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences; Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: ysmetanin@rambler.ru
Rússia, ul. Vavilova 44, korp. 2, Moscow, 119333; Institutskii proezd 9, Dolgoprudnyi, Moscow oblast, 141700

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018