Active Learning and Crowdsourcing: A Survey of Optimization Methods for Data Labeling


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

High-quality annotated collections are a key element in constructing systems that use machine learning. In most cases, these collections are created through manual labeling, which is expensive and tedious for annotators. To optimize data labeling, a number of methods using active learning and crowdsourcing were proposed. This paper provides a survey of currently available approaches, discusses their combined use, and describes existing software systems designed to facilitate the data labeling process.

Авторлар туралы

R. Gilyazev

Ivannikov Institute for System Programming, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Хат алмасуға жауапты Автор.
Email: gilyazev@ispras.ru
Ресей, ul. Solzhenitsyna 25, Moscow, 109004; Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141701

D. Turdakov

Ivannikov Institute for System Programming, Russian Academy of Sciences; Moscow State University; National Research University Higher School of Economics

Хат алмасуға жауапты Автор.
Email: turdakov@ispras.ru
Ресей, ul. Solzhenitsyna 25, Moscow, 109004; Moscow, 119991; ul. Myasnitskaya 20, Moscow, 101000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018