Active Learning and Crowdsourcing: A Survey of Optimization Methods for Data Labeling
- Авторы: Gilyazev R.A.1,2, Turdakov D.Y.1,3,4
-
Учреждения:
- Ivannikov Institute for System Programming, Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- Moscow State University
- National Research University Higher School of Economics
- Выпуск: Том 44, № 6 (2018)
- Страницы: 476-491
- Раздел: Article
- URL: https://journals.rcsi.science/0361-7688/article/view/176707
- DOI: https://doi.org/10.1134/S0361768818060142
- ID: 176707
Цитировать
Аннотация
High-quality annotated collections are a key element in constructing systems that use machine learning. In most cases, these collections are created through manual labeling, which is expensive and tedious for annotators. To optimize data labeling, a number of methods using active learning and crowdsourcing were proposed. This paper provides a survey of currently available approaches, discusses their combined use, and describes existing software systems designed to facilitate the data labeling process.
Об авторах
R. Gilyazev
Ivannikov Institute for System Programming, Russian Academy of Sciences; Moscow Institute of Physics and Technology
Автор, ответственный за переписку.
Email: gilyazev@ispras.ru
Россия, ul. Solzhenitsyna 25, Moscow, 109004; Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141701
D. Turdakov
Ivannikov Institute for System Programming, Russian Academy of Sciences; Moscow State University; National Research University Higher School of Economics
Автор, ответственный за переписку.
Email: turdakov@ispras.ru
Россия, ul. Solzhenitsyna 25, Moscow, 109004; Moscow, 119991; ul. Myasnitskaya 20, Moscow, 101000
Дополнительные файлы
