Experimental definition of lateral stiffness of a pneumatic wheel of the MTZ-82 “Belarus” tractor

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Due to the excessive vertical and angular vibrations of suspensionless vehicles used in agriculture and road construction that occur during movement, the velocity of their motion is limited, which, in the conditions of a constant traffic flow, reduces the road capacity. Therefore, the search for ways to improve the vibration-isolating properties of wheeled suspensionless vehicles is a relevant issue, the solution of which affects not only on traffic safety and driving comfort, but also on average speed and fuel efficiency.

AIMS: To determine the lateral stiffness of the pneumatic wheel from the rear axle of the MTZ-82 “Belarus” tractor at different tire pressures, basing on bench tests.

METHODS: On the basis of the hydraulic pulsation test rig of the Automatic Units department of the VolgGTU, a special-purpose movable supporting and measuring device was developed and assembled, the feature of which is that 4 rollers with flanges are installed on top of the hydraulic actuator force sensor, a flat rectangular base plate is supported on these rollers and connected with a vertical frame of the rig through a force-measuring device by means of a screw mechanism. The tested wheel is mounted on the base plate, the wheel’s axle is fixed on a vertically-moving traverse, on top of which weights creating the necessary vertical force are fixed. The test procedure consisted in measuring the lateral force and lateral displacement of the base plate until the tire slip occurred at the following tire pressures: at the recommended pressure of 0.16 MPa and at reduced pressures of 0.12, 0.08 and 0.04 MPa.

RESULTS: Based on the test results, the elastic characteristic curves of the lateral stiffness of the tested wheel were obtained. These characteristic curves have a regressive form, as their slope significantly decreases with a significant reduce in tire pressure. Thus, when the tire pressure is reduced from 0.16 to 0.12 MPa, there is practically no difference in the obtained values of lateral stiffness, which reaches 112.5 kN/m. After a 2-fold tire pressure reduction, the lateral stiffness decreases by 7%, and after a 4-fold reduction, by 28%. At the same time, the static tire deflection increases from 22 to 32 mm, which significantly increases the contact patch of the tire with the ground.

CONCLUSIONS: By means of the tests carried out, it is established that tire pressure reduction by 25–50% of the recommended value does not have a significant effect on the loss of lateral stiffness of the pneumatic wheel of the rear axle of the MTZ-82 “Belarus” tractor, which is important to use in order to increase traction and improve ride comfort of wheeled tractors.

About the authors

Vyacheslav V. Novikov

Volgograd State Technical University

Email: nvv_60@mail.ru
ORCID iD: 0000-0002-0917-781X
SPIN-code: 5698-1330
Scopus Author ID: 7402005073

Dr. Sci. (Tech.), Professor of the Automatic Units Department

Russian Federation, Volgograd

Alexey V. Pozdeev

Volgograd State Technical University

Author for correspondence.
Email: pozdeev.vstu@gmail.com
ORCID iD: 0000-0002-3144-3619
SPIN-code: 5559-5294
Scopus Author ID: 57170323100
ResearcherId: M-6056-2016

Cand. Sci. (Tech.), Associate Professor of the Automatic Units Department

Russian Federation, Volgograd

Vitaly V. Erontaev

Volgograd State Technical University

Email: akademia.avt@yandex.ru
ORCID iD: 0009-0005-5822-1062
SPIN-code: 6082-2040

Senior Lecturer of the Technical Operation and Repair of Vehicles Department

Russian Federation, Volgograd

Dmitry A. Chumakov

Volgograd State Technical University

Email: chda1991@yandex.ru
ORCID iD: 0000-0003-3958-128X
SPIN-code: 4856-4448
ResearcherId: M-8718-2016

Cand. Sci. (Tech.), Engineer of the Automatic Units Department

Russian Federation, Volgograd

Nikolay M. Kolesov

Volgograd State Technical University

Email: kolesov.nikolay2017@yandex.ru
ORCID iD: 0009-0006-2377-5863
SPIN-code: 3653-6177

Postgraduate of the Automatic Units Department

Russian Federation, Volgograd

Nikolay V. Timoshin

Volgograd State Technical University

Email: titan_34rus@mail.ru
ORCID iD: 0009-0006-6890-2854
SPIN-code: 2327-9267

Postgraduate of the Automatic Units Department

Russian Federation, Volgograd

Timofey A. Kagochkin

Volgograd State Technical University

Email: tkagochkin@mail.ru
ORCID iD: 0009-0004-8944-1175
SPIN-code: 2758-8598

Student of the Automatic Units Department

Russian Federation, Volgograd

References

  1. Pasport 80-00000010 PS. Minsk: RUP «Minskiy traktornyy zavod»; 2008. (in Russ). Accessed: 08.11.2022. Available from: https://beltrakt.ru/images/documents/pasport/pasport_belarus82.pdf
  2. Sazonov IS, Kim VA, Amelchenko NP, et al. Damping of low-frequency vibrations on the driver’s seat of a wheeled tractor. Vestnik Belorussko-Rossiyskogo universiteta. 2014;4(45):60–70. (in Russ).
  3. Sirotin PV, Lebedinsky IYu. Justification and analysis of the use of hybrid dynamic models for the study of suspension systems for the cabins of grain and forage harvesters. Vestnik agrarnoy nauki Dona. 2018;2(42):39-47. (in Russ).
  4. Sirotin PV, Lebedinsky IYu, Kravchenko VV. Analysis of vibroacoustic loading of the workplace of operators of combine harvesters. Sovremennye naukoemkie tekhnologii. Regionalnoe prilozhenie. 2018;1(53):113-121. (in Russ).
  5. Kozhushko AP. Experimental studies of the ergonomic properties of wheeled tractors with units of variable mass. Avtomobilnyy transport (Kharkov). 2019;45:38-45. (in Russ).
  6. Podrubalov MV, Klubnichkin EE. Review of studies of low-frequency random oscillations and smooth running of wheeled vehicles. Nauchnyy zhurnal KubGAU. 2021;173(09):249–257. (in Russ).
  7. Patent RUS № 2108240 / 10.04.1998. Ryabov IM. Koleso transportnogo sredstva. (in Russ). Accessed: 08.11.2022. Available from: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2108240&TypeFile=html
  8. Patent RUS № 2144862 / 27.01.2000. Byul. № 3. Ryabov IM. Koleso transportnogo sredstva. (in Russ). Accessed: 08.11.2022. Available from: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2144862&TypeFile=html.
  9. Patent RUS № 2178742 / 27.01.2002. Byul. № 3. Ryabov IM. Koleso transportnogo sredstva. (in Russ). Accessed: 08.11.2022. Available from: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2178742&TypeFile=html
  10. Ryabov IM, Chernyshov KV, Sokolov AYu. Mathematical model of a wheel with a pneumatic damping system for non-suspension machines. Izv. VolgGTU. Seriya «Nazemnye transportnye sistemy»: mezhvuz. sb. nauch. st. Volgograd: VolgGTU; 2007;2(8):51–53. (in Russ).
  11. Shilo IN, Chigarev YuV, Romanyuk NN, Volsky AL. Decreasing soil compaction by controlling the damping properties of pneumatic wheel propellers. Vestnik Belorussko-Rossiyskogo universiteta. 2008;1(18):57–62. (in Russ).
  12. Grushnikov VA, Kalinkovsky VS. Safe tires. Avtomobilnaya promyshlennost. 2010;3:18–21. (in Russ).
  13. Yarovoy VG, Sharapov AP. Tire as an elastic damping link of an agricultural tractor. Vestnik agrarnoy nauki Dona. 2010;3: 25–30. (in Russ).
  14. Rykov SP, Snitsarev AV, Teterin SN. Design, calculation and test results of a wheel mover for low-speed transport. Sistemy. Metody. Tekhnologii. 2013;3(19):84–89. (in Russ).
  15. Aldhufairi H, Essa K, Olatunbosun O. Multi-chamber tire concept for low rolling-resistance. SAE International Journal of Passenger Cars – Mechanical Systems. 2019;12(2):111–126. doi: 10.4271/06-12-02-0009
  16. Aldhufairi HS, Olatunbosun OA, Essa K. Multi-chamber tyre designing for fuel economy. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2020;234(2–3):522–535. doi: 10.1177/0954407019857026 .
  17. Novikov VV, Pozdeev AV, Chernyshov KV, et al. The main directions of development of wheel structures with pneumatic tires. Energo- i resursosberezhenie: promyshlennost i transport. 2021;4(37):38–44. (in Russ).
  18. Novikov VV, Ryabov IM. Experimental technique (with bench tests of suspensions and wheels of ATS): textbook. Volgograd: VolgGTU; 1999. (in Russ).
  19. Patent RUS № 161103 / 10.04.2016. Byul. № 10. Kondakov A.E., Ogorodnov S.M. Stend dlya staticheskikh ispytaniy shin. (in Russ). Accessed: 08.11.2022. Available from: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPM&DocNumber=161103&TypeFile=html
  20. WFT-CX wheel force and torque sensor. Moscow: SENSORIKA-M; 2022. [internet] (in Russ). Accessed: 27.10.2022. Available from: http://www.sensorika.com/ru/ispytanie-transportnyh-sredstv/datchik-sily/
  21. Rykov SP. Evaluation of stiffness and absorbing properties of pneumatic tires under complex wheel loading on the example of the action of normal and lateral forces. Mekhaniki XXI veku. 2020;19:225–233.
  22. Cherepanov LA, Elizarov AA. Stand for testing the grip properties of wheels of passenger cars. Transportnye sistemy. 2018. № 4(10). С. 22–26.
  23. Pozdeev AV. The device and principle of operation of a single-support hydropulsator vibro-stand: textbook. Volgograd: VolgGTU; 2020.
  24. Shchigolev SV. Issledovanie poperechnoy ustoychivosti samokhodnykh selskokhozyaystven-nykh mashin [dissertation] Moscow; 2018.
  25. Patent RUS № 2765194 / 26.01.2022. Byul. № 3. Ryabov IM, Pozdeev AV, Novikov VV, et al. Stend dlya ispytaniya pnevmaticheskikh shin i uprugikh elementov podvesok transport-nykh sredstv. Accessed: 08.11.2022. Available from: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2765194&TypeFile=html
  26. Patent RUS № 2765315 / 28.01.2022, Byul. № 4. Ryabov IM, Pozdeev AV, Novikov VV, et al. Stend dlya ispytaniya pnevmaticheskikh shin i uprugikh ele-mentov podvesok transportnykh sredstv. Accessed: 08.11.2022. Available from: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2765315&TypeFile=html
  27. Patent RUS № 2765318 / 28.01.2022. Byul. № 4. Novikov VV, Pozdeev AV, Ryabov IM, et al. Stend dlya ispytaniya pnevmaticheskikh shin i uprugikh elementov podvesok transport-nykh sredstv. Accessed: 08.11.2022. Available from: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2765318&TypeFile=html
  28. Patent RUS № 2765510 / 31.01.2022. Byul. № 4. Ryabov IM, Pozdeev AV, Novikov VV, et al. Stend dlya ispytaniya pnevmaticheskikh shin i uprugikh elementov podvesok transport-nykh sredstv. Accessed: 08.11.2022. Available from: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2765510&TypeFile=html
  29. Patent RUS № 2765583 / 01.02.2022. Byul. № 4. Pozdeev AV, Ryabov IM, Novikov VV, et al. Stend dlya ispytaniya pnevmaticheskikh shin i uprugikh elementov podvesok transport-nykh sredstv. Accessed: 08.11.2022. Available from: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2765583&TypeFile=html
  30. Patent RUS № 2767459 / 17.03.2022. Byul. № 8. Novikov VV, Pozdeev AV, Ryabov IM, et al. Stend dlya ispytaniya pnevmaticheskikh shin i uprugikh elementov podvesok transport-nykh sredstv. Accessed: 08.11.2022. Available from: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2767459&TypeFile=html

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Main view on the hydraulic pulsation test rig: 1 – a base; 2 – a vertical supporting structure; 3 – rail guides; 4 – a movable flat base; 5 – a traverse with weights; 6 – a hydraulic pulsating actuator; 7 – a winding rope.

Download (137KB)
3. Fig. 2. The universal unit for lateral tire stiffness measuring: a – the CAD-model of the unit; b – the unit prototype; 1 – a unit’s frame; 2 – rollers with flanges; 3 – a base plate; 4 – a Tokar reference dynamometer; 5 – a screw; 6 – a retaining bar; 7 – a tension nut.

Download (130KB)
4. Fig. 3. The experimental unit for research of pneumatic wheel lateral stiffness: a and b – initial and final positions of tire of the tested wheel 1; 2 – a base plate; 3 – a movable plate with weights; 4 – wheel mounting; 5, 6 – lateral and vertical force sensors; Δ – value of tire lateral slip.

Download (286KB)
5. Fig. 4. Lateral force sensor setup at the hydraulic pulsation rig (top view): 1 – mounting to the vertical supporting structure; 2 – mounting to the base plate; 3 – a Tokar dynamometer.

Download (131KB)
6. Fig. 5. Lateral force depending on lateral slip of the 400-965/15.5-38 tire of the MTZ-82’s wheel at various tire pressure: 1 – 0.04 MPa; 2 – 0.08 MPa; 3 – 0.12 MPa; 4 – 0.16 MPa.

Download (75KB)
7. Fig. 6. Maximal lateral slip of the 400-965/15.5-38 tire before losing grip under the vertical load of 6 kN depending on tire pressure.

Download (41KB)
8. Fig. 7. Static deflection of the 400-965/15.5-38 tire under the vertical load of 6 kN depending on tire pressure.

Download (43KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies