Oerlemans Minimal Model as a Possible Instrument for Describing Mountain Glaciation in Earth System Models

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The main approaches to mountain glacier simulation were reviewed, and Oerlemans minimal model was chosen as a parameterization core of mountain glaciation in the Earth System models. The proposed model is based on a one-dimensional equation of glacier mass balance. The mass balance components are calculated with the use of a specially developed model of orographic precipitation, an algorithm for correction of incoming solar radiation onto an inclined ice surface, and schemes of calculation of turbulent heat-moisture exchange based on the Monin–Obukhov theory. The model was implemented for the Djankuat glacier (the Central Caucasus), for which a long measurement series is available. The model gives a good reproduction of the dynamics of glacier length over the period 1985–2020 based on measured mass balance values: –13 m/year, which is in practically perfect agreement with the field data. This means that the Oerlemans model can be used in Earth system models. The results of simulation based on the calculated mass balance showed a significant positive trend in ablation at a slight change in accumulation, which is also in agreement with the reality. However, in this case, the values of the annual thawing depth and the glacier contraction are twice as large and those observed in reality. The further development of the model (the inclusion of a snow cover block, the incorporation of debris mantle and mountain–valley circulation) will eliminate these shortcomings.

作者简介

P. Toropov

Faculty of Geography, Moscow State University, 119991, Moscow, Russia; Institute of Geography, Russian Academy of Sciences, 119017, Moscow, Russia; Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

Email: tormet@inbox.ru
Россия, 119991, Москва; Россия, 119017, Москва; Россия, 119333, Москва

A. Debol’skii

Research Computing Center, Moscow State University, 119234, Moscow, Russia

Email: tormet@inbox.ru
Россия, 119234, Москва

A. Polyukhov

Faculty of Geography, Moscow State University, 119991, Moscow, Russia

Email: tormet@inbox.ru
Россия, 119991, Москва

A. Shestakova

Institute of Atmospheric Physics, Russian Academy of Sciences, 119017, Moscow, Russia

Email: tormet@inbox.ru
Россия, 119017, Москва

V. Popovnin

Faculty of Geography, Moscow State University, 119991, Moscow, Russia

Email: tormet@inbox.ru
Россия, 119991, Москва

E. Drozdov

Faculty of Geography, Moscow State University, 119991, Moscow, Russia; Institute of Geography, Russian Academy of Sciences, 119017, Moscow, Russia; Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

编辑信件的主要联系方式.
Email: tormet@inbox.ru
Россия, 119991, Москва; Россия, 119017, Москва; Россия, 119333, Москва

参考

  1. Володин Е.М., Галин В.Я., Грицун А.С. и др. Математическое моделирование Земной системы // М.: МАКС Пресс, 2016. 324 с.
  2. Волошина А.П. Метеорология горных ледников // МГИ. 2001. Вып. 92. С. 3–138.
  3. Голубев Г.Н., Дюргеров М.Б., Маркин В.А. и др. Ледник Джанкуат (Центральный Кавказ) / Под ред. И.Я. Боярского. Л.: Гидрометеоиздат, 1978. 184 с.
  4. Догановский А.М. Гидрология суши (общий курс). СПб.: РГГМУ, 2012. 524 с.
  5. Кислов А.В., Морозова П.А. Стохастический анализ динамики горного ледника // Вестн. Московского ун-та. Сер. 5, География. 2013. № 4. С. 9−13.
  6. Котляков В.М. Мир снега и льда. М.: Наука, 1994. 286 с.
  7. Кренке А.Н., Ананичева М.Д., Демченко П.Ф., Кислов А.В., Носенко Г.А., Поповнин В.В., Хромова Т.Е. Ледники и ледниковые системы // Методы оценки последствий изменения климата для физических и биологических систем. М.: Планета, 2012. 508 с.
  8. Кренке А.Н., Ходаков В.Г. О связи поверхностного таяния ледников с температурой воздуха // МГИ. 1966. Вып. 12. С. 153–164.
  9. Кунахович М.Г., Макаров А.В., Поповнин В.В. Отклик ледника Джанкуат на ожидаемые изменения климата (по модели Эрлеманса) // Вестн. Московского ун-та. Сер. 5, География. 1996. № 1. С. 31–37.
  10. Михаленко В.Н., Кутузов С.С., Лаврентьев И.И., Торопов П.А., и др. Ледники и климат Эльбруса. СПб.: Нестор-История, 2020. 372 с.
  11. Морозова П.А., Рыбак О.О. Регионализация данных глобального климатического моделирования для расчета баланса массы горных ледников // Лед и снег. 2017. Вып. 57. № 4. С. 437–452.
  12. Незваль Е.И., Чубарова Н.Е., Гребнер Ю., Омура А. Влияние атмосферных параметров на длинноволновую нисходящую радиацию и особенности ее режима в Москве // Изв. РАН. Физика атмосферы и океана. 2012. Т. 48. № 6. С. 682–690.
  13. Патерсон У. С. Физика ледников. Изд. 2. М.: Мир, 1984. 472 с.
  14. Поповнин В.В., Сергиевская Я.Е. Об обратной связи доли лавинного питания с аккумуляцией ледника // Лед и снег. 2018. Т. 58. № 4. С. 437–447.
  15. Постникова Т.Н., Рыбак О.О. Глобальные гляциологические модели: новый этап в развитии методов прогнозирования эволюции ледников. Ч. 1. Общий подход и архитектура моделей // Лед и снег. 2021. Т. 62. № 2. С. 620−636.
  16. Рец Е.П., Фролова Н.Л., Поповнин В.В. Моделирование таяния поверхности горного ледника // Лед и снег. 2011. Т. 116. № 4. С. 24–31.
  17. Рыбак О.О., Рыбак Е.А., Корнева И.А. Модельные расчеты подморенного таяния на леднике Джанкуат // Системы контроля окружающей среды. 2018. № 12. С. 86−92.
  18. Рыбак О.О., Рыбак Е.А., Кутузов С.С., Лаврентьев И.И., Морозова П.А. Калибровка математической модели динамики ледника Марух, Западный Кавказ // Лед и снег. 2015. Т. 55. № 2. С. 9–20.
  19. Торопов П.А., Шестакова А.А., Ярынич Ю.И., Кутузов С.С. Моделирование орографической составляющей осадков на примере Эльбруса // Лед и снег. 2022. Т. 62. № 4. С. 485–503.
  20. Турчанинова А.С., Лазарев А.В., Марченко Е.С., Селиверстов Ю.Г., Сократов С.А. и др. Методика оценки лавинного питания (на примере трех ледников Тянь-Шаня) // Лед и снег. 2019. Т. 59. № 4. С. 460–474.
  21. Andreas E.L. A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice // Boundary-Layer Meteorol. 1987. V. 38. P. 159–184.
  22. Barry R.G. Mountain Weather and Climate. 3rd edition. Cambridge: Cambridge Univ. Press, 2008. 506 p.
  23. Bintanja R. Snowdrift Sublimation in a Katabatic Wind Region of the Antarctic Ice Sheet // J. Appl. Meteorol. 2001. V. 40. P. 1952–1966.
  24. Broeke M.R. Momentum, heat and moisture budgets of katabatic wind layer over midlatitude glacier in summer // J. Appl. Meteorol. 1997. V. 36. № 6. P. 763–774.
  25. Budd W. F., Jenssen D. Numerical modeling of glacier systems // IAHS Publ. 1975. V. 104. P. 267–291.
  26. Businger J.A., Wyngaard J.C., Izumi Y., Bradley E.F. Flux-Profile Relationships in the Atmospheric Surface Layer // J. Atmos. Sci. 1971. V. 28. P. 181–189.
  27. Carlson B.Z., Georges D., Rabatel A., Randin C.F., Renaud J., Delestrade A., Zimmermann N.E., Choler P., Thuiller W. Accounting for tree line shift, glacier retreat and primary succession in mountain plant distribution models // Diversity and Distributions. 2014. V. 20. P. 1379–1391.
  28. Chen J., Xiang Q., Shichang K., Wentao D. Effects of clouds on surface melting of Laohugou glacier No. 12, western Qilian Mountains, China // J. Glaciol. 2018. V. 64. № 243. P. 89–99.
  29. Cook K.H., Yang X., Carter C.M., Belcher B.N. A Modeling System for Studying Climate Controls on Mountain Glaciers with Application to the Patagonian Icefields Department of Earth and Atmospheric Sciences Cornell University Ithaca // Climatic Change. 2003. V. 56. № 3. P. 339–367.
  30. Cullen J., Molg T., Kaser G., Steffen K., Hardy D. Energy-balance model validation on the top of Kilimanjaro, Tanzania, using eddy covariance data Nicolas // Annals Glaciol. 2007. V. 46. P. 227−233
  31. Dyer A.J. A Review of Flux-Profile Relationships // Boundary-Layer Meteorol. 1974. V. 7. P. 363–372.
  32. Farinotti D., Huss M., Furst J.J., Landmann J., Machguth H., Maussion F., Pandit A. A consensus estimate for the ice thickness distribution of all glaciers on Earth // Nature Geosci. 2019. V. 12. № 3. P. 168–173.
  33. GlaThiDa Consortium: Glacier Thickness Database 3.0.1. Zurich, Switzerland: World Glacier Monitoring Service, 2019. https://doi.org/10.5904/wgms-glathida-2019-03
  34. Hock R. Temperature index melt modelling in mountain areas // J. Hydrol. 2003. V. 282. № 1–4. P. 104–115.
  35. Huss M., Hock R. A new model for global glacier change and sea-level rise // Frontiers Earth Sci. 2015. V. 3. № 54. P. 664–682.
  36. Huss M., Hock R. Global-scale hydrological response to future glacier mass loss // Nature Climate Change. 2018. V. 8. № 2. P. 135–140.
  37. Hutter K. The application of the shallow-ice approximation // Theoretical Glaciol. 1983. V. 1. P. 256–332.
  38. Ibatullin S., Yasinskiy V., Mironenkov A. The impact of climate change on water resources in Central Asia // Republic of Kazakhstan, Almaty: Eurasian Development Bank Sector report № 6. 2009. 43 p.
  39. Jin L., Ganopolski A., Chen F., Claussen M., Wang H. Impacts of snow and glaciers over Tibetan Plateau on Holocene climate change: Sensitivity experiments with a coupled model of intermediate complexity // Geophys. Res. Lett. 2005. V. 32. № 17. 360–390.
  40. Kotlarski S., Jacob D., Podzun R., Frank P. Representing glaciers in a regional climate model // Climate Dynamic. 2010. V. 34. P. 27–46.
  41. MacDougall A.H., Flowers G.E. Spatial and temporal transferability of a distributed energy-balance glacier melt-model // J. Climate. 2011. V. 24. № 5. P.1480–1498.
  42. Mölg T., Cullen N.J., Hardy D.R., Kaser J., Klok L. Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate // Int. J. Climatol. 2008. V. 28. P. 881–892.
  43. Muller M.D., Scherer D. A grid-and subgrid-scale radiation parameterization of topographic effects for mesoscale weather forecast models // Monthly Weather Rev. 2005. V. 133. № 6. P. 1431–1442.
  44. Nye J. F. A theory of wave formation on glaciers // IAHS Publ. 1958. V. 47. P. 139–154.
  45. Oerlemans J. Minimal Glacier Models. Utrecht: Igitur, 2008. 91 p.
  46. Ohmura A. Physical basis for the temperature-based melt-index method // J. Appl. Meteorol. 2001. V. 40. P. 753–761.
  47. Østby T.I., Vikhamar T.S., Hagen J.O., Hock R., Kohler J., Reijmer C.H. Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957–2014 // The Cryosphere. 2017. V. 11. P. 191–215.
  48. Philipona R. Greenhouse warming and solar brightening in and around the Alps // Int. J. Climatol. 2013. V. 33. P. 1530–1537.
  49. Pritchard H.D., Arthern R.J., Vaughan D.G., Edwards L.A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets // Nature. 2009. V. 461. P. 971–975.
  50. Radić V., Menounos B., Shea J., Fitzpatrick N., Mekdes A., Tessema M.A., Déry S.J. Evaluation of different methods to model near-surface turbulent fluxes for a mountain glacier in the Cariboo Mountains, BC, Canada // The Cryosphere. 2017. V. 11. P. 2897–2918.
  51. Raper S.C.B., Braithwaite R.J. Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry // The Cryosphere. 2009. V. 3. № 2. P. 183. https://doi.org/10.5194/tc-3-183-2009
  52. Reichert B.K., Bengtsson L., Oerlemans J. Recent glacier retreat exceeds internal variability // J. Climate. 2002. V. 15. P. 3069–3081.
  53. Rets E.P., Popovnin V.V., Toropov P.A. et al. Djankuat glacier station in the North Caucasus, Russia: a database of glaciological, hydrological, and meteorological observations and stable isotope sampling results during 2007–2017 // Earth Syst. Sci. Data. 2019. V. 11. P. 1463–1481.
  54. RGI Consortium. Randolph Glacier Inventory (RGI) – A dataset of global glacier outlines: Version 6.0. Technical Report. Global Land Ice Measurements from Space. Boulder, Colorado, USA, 2017. https://doi.org/10.7265/N5-RGI-60.
  55. Shannon S., Smith R., Wiltshire A., Payne T., Huss M., Betts R., Caesar J., Koutroulis A., Jones D., Harrison S. Global glacier volume projections under high-end climate change scenarios // The Cryosphere. 2019. V. 13. P. 325–350.
  56. Sorg A., Bolch T., Stoffel M., Solomina O., Beniston M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia) // Nature Climate Change. 2012. V. 2. № 10. P. 725–731.
  57. Steiner D., Walter A., Zumbuhl H.J. The application of a non-linear back-propagation neural network to study the mass balance of Grosse Aletschgletscher, Switzerland // J. Glaciol. 2005. V. 51. № 173. P. 313–323.
  58. Tolstykh M.A., Fadeev R.Y., Shashkin V.V., Goyman G.S. Improving the Computational Efficiency of the Global SL-AV Numerical Weather Prediction Model // Supercomputing Frontiers and Innovations. 2021. V. 8. № 4. P. 11–23.
  59. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century // Int. J. Climatol. 2019. V. 39. P. 4703–4720.
  60. Wheler B.A., Flowers G.E. Glacier subsurface heat-flux characterizations for energy-balance modeling in the Donjek Range, southwest Yukon, Canada // J. Glaciol. 2011. V. 57. № 201. P.121–133
  61. Zekollari H., Huss M., Farinotti D. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble // The Cryosphere. 2019. V. 13. P. 1125–1146.
  62. Zekollari H., Huss M., Farinotti D., Lhermitte S. Ice-Dynamical Glacier Evolution Modeling—A Review // Rev. Geophys. 2022. V. 60. № 2. P. e2021RG000754.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (2MB)
3.

下载 (854KB)
4.

下载 (368KB)
5.

下载 (292KB)

版权所有 © П.А. Торопов, А.В. Дебольский, А.А. Полюхов, А.А. Шестакова, В.В. Поповнин, Е.Д. Дроздов, 2023

##common.cookie##