Typification of floodplain spawning grounds of the middle Ural River and the assessment of their flooding conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Changes in the hydrological regime of the Ural River basin, associated with flow regulation and regional climate features, leads to the deterioration of many floodplain water bodies. Many oxbow depressions and lakes, which are habitats and spawning grounds for local fish species, lose their hydraulic connection with the main river channel, dry up and become overgrown with aquatic vegetation. The flooding duration for spawning grounds of various types largely determine the abundance and diversity of the local ichthyofauna in the floodplane lakes. Low spring floods in the period 2008–2023 became the main factor in the functional changes of floodplain water bodies, in which the frequency and duration of their connection with the main river channel decreased. Based on the data of ichthyological and hydrological field campaigns of 2022–2023, carried out in the valley of the middle reaches of the Ural River, including the lower section of the Sakmara River, the spawning grounds were classified based on their morphology and flooding conditions. The examination of the species and quantitative composition of fish in thirty floodplain water bodies made it possible to assess the influence of the frequency of their connection with the main river channel during spring floods on the total number of individuals and the species composition of fish. These indicators can be taken into account when planning hydraulic engineering measures for the aquatic environment rehabilitation.

About the authors

S. V. Yakovlev

Institute of Water Problems of the Russian Academy of Sciences

Moscow, 119333 Russia

V. O. Polyanin

Institute of Water Problems of the Russian Academy of Sciences

Moscow, 119333 Russia

A. M. Alabyan

Institute of Water Problems of the Russian Academy of Sciences; Lomonosov Moscow State University, Faculty of Geography

Email: andrei_alabyan@mail.ru
Moscow, 119333 Russia; Moscow, 119991 Russia

V. S. Boldyrev

Volgograd branch of VNIRO

Volgograd, 400001 Russia

G. S. Ermakova

Institute of Water Problems of the Russian Academy of Sciences; Zubov State Oceanographic Institute

Moscow, 119333 Russia; Moscow, 119034 Russia

References

  1. Belikov V.V., Borisova N.M., Vasil'eva E.S., Plotko A.V., Fedorova T.A. Chislennaya gidrodinamicheskaya model' protyazhennogo uchastka r. Ural i ee primenenie dlya optimizatsii upravleniya vodnymi resursami i otsenki riskov zatopleniya selitebnykh territorii navodneniyami i volnami proryva // Vod. resursy. 2024. T. 51. № 5. S. 608618.
  2. Voda Rossii. Rechnye basseiny. Ekaterinburg: AKBA-PRESS, 2000. 536 s.
  3. Gareev A.M., Fatkhutashkova R.Sh. Osnovnye etapy izucheniya gidrologo-ekologicheskikh kharakteristik vodotokov v basseine reki Ural (v predelakh Rossiiskoi federatsii) // Vod. khoz-vo Rossii. 2017. № 5. S. 4–15.
  4. Metodika atmosfernoi korrektsii predostavlyaemykh USGS stsen Level 2. https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-reflectance (data obrashcheniya: 01.10.2024).
  5. Mikhailov V.N. Ural // Reki i ozera mira / Pod red. V.N. Danilova-Danilyana. M.: Entsiklopediya, 2012. S. 711–713.
  6. Saltankin V.P. Iriklinskoe vodokhranilishche // Reki i ozera mira / Pod red. V.N. Danilova-Danilyana. M.: Entsiklopediya, 2012. S. 280.
  7. Portal distantsionnogo zondirovaniya Zemli Earth Explorer USGS. https://earthexplorer.usgs.gov (data obrashcheniya: 01.10.2024).
  8. Prokhorova N.B., Kosolapov A.E. Sovremennyi vodokhozyaistvennyi balans reki Ural na territorii Rossiiskoi Federatsii // Vod. khoz-vo Rossii: problemy, tekhnologii, upravlenie. 2011. № 2. S. 4–20. https://doi.org/10.35567/1999-4508-2011-2-1.
  9. Chibilev A.A. Bassein Urala: istoriya, geografiya, ekologiya // Ekaterinburg: In-t stepi UrO RAN, 2008. 312 s.
  10. Amoros C., Bornette G. Connectivity and biocomplexity in waterbodies of riverine floodplains // Freshwater Biol. 2002. V. 47. № 4. https://doi.org/10.1046/j.1365-2427.2002.00905.x.
  11. Aramburu-Paucar J.M., Martinez-Capel F., Puig-Mengual C.A., Muñoz-Mas R., Bertagnoli A., Tonina D. A large flood resets riverine morphology, improves connectivity and enhances habitats of a regulated river // Sci. Total Environ. 2024. V.919. № 170717. https://doi.org/10.1016/j.scitotenv.2024.170717.
  12. Bornette G., Amoros C., Lamouroux N. Aquatic plant diversity in riverine wetlands: The role of connectivity // Freshwater Biol. 1998. V. 39. № 2. P. 267–283. https://doi.org/10.1046/j.13652427.1998.00273.x.
  13. Bunn S.E., Arthington A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity // Environ. Management. 2002. V. 30. Iss. 4. P. 492–507. https://doi.org/10.1007/s00267-002-2737-0.
  14. Gooseff M.N., Wlostowski A., McKnight D.M., Jaros C. Hydrologic connectivity and implications for ecosystem processes – Lessons from naked watershed // Geomorphol. 2017. V. 277. P. 63–71. https://doi.org/10.1016/J.GEOMORPH.2016.04.024.
  15. Harvey J., Gooseff M. River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins // Water Resour. Res. 2015. V. 51. Iss. 9. P. 6893–6922. https://doi.org/10.1002/2015WR017617.
  16. Intergovernmental Panel on Climate Change. Weather and Climate Extreme Events in a Changing Climate // Climate Change 2021 – The Physical Science Basis. Cambridge: Cambridge Univ. Press, 2023. P. 1513–1766. https://doi.org/10.1017/978109157896.013.
  17. Kuzmin Z.V., Shinkarenko S.S., Solodovnikov D.A., Markov M.L. The Effects of River Control and Climatic and Hydrological Changes on the State of Floodplain and Delta Ecosystems of the Lower Don // Arid Ecosystems. 2022, V. 12. № 4. P. 361–373. https://doi.org/10.1134/S2079096122040126.
  18. Middelkoop H., Alabyan A., Babich D., Ivanov V. Post-dam channel and floodplain adjustment along the Lower Volga River, Russia // Geomorphic approaches to integrated floodplain management of lowland fluvial systems in North America and Europe. New York: Springer, 2015. P. 245–254. https://doi.org/10.1007/978-1-4939-2380-9_10.
  19. Opperman J.J., Luster R., McKenney B.A., Roberts M., Meadows A.W. Ecologically functional floodplains: Connectivity, flow regime, and scale // J. Am. Water Resour. Association. 2010. V. 46. № 2. P. 211–226. https://doi.org/10.1111/j.1752-1688.2010.00426.x.
  20. Seddon N., Smith A., Smith P., Key I., Chausson A., Girardin C., House J., Srivastava S., Turner B. Getting the message right on nature-based solutions to climate change // Global Change Biol. 2021. V. 27. № 8. P. 1518–1546. https://doi.org/10.1111/geb.15513.
  21. Singh R., Tiwari A.K., Singh G.S. Managing riparian zones for river health improvement: an integrated approach // Landscape Ecol. Engineering. 2021. V. 17. Iss. 2. P. 195–223. https://doi.org/10.1007/s11355-020-00436-5.
  22. Sladecek V. System of water quality from the biological point of view // Arch. Hydrobiol. Ergeb. Limnol. 1973. № 3. 218 p.
  23. Stoffers T., Buijse A.D., Geerling G.W., Jans L.H., Schoor M.M., Poos J.J., Verreth J.A.J., Nagelkerke L.A.J. Freshwater fish biodiversity restoration in floodplain rivers requires connectivity and habitat heterogeneity at multiple spatial scales // Sci. Total Environ. 2022. V. 838. P. 156509. https://doi.org/10.1016/J.SCITOTENV.2022.156509.
  24. Thieme M., Birnie-Gauvin K., Opperman J.J., Franklin P.A., Richter H., Baumgartner L., Ning N., Vu A.V., Brink K., Sakala M., O’Brien G.C., Petersen R., Tongchai P., Cooke S J. Measures to safeguard and restore river connectivity // Environ. Rev. 2024. V. 32. № 3. https://doi.org/10.1139/er-2023-0019.
  25. Tickner D., Opperman J.J., Abell R., Acreman M., Arthington A.H., Bunn S.E., Cooke S.J., Dalton J., Darwall W., Edwards G., Harrison I., Hughes K., Jones T., Leclère D., Lynch A.J., Leonard P., McClain M.E., Murwen D., Olden J.D., Ormerod S.J., Robinson J., Tharme R.E., Thieme M., Tockner K, Wright M., Young L. Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan // BioSci. 2020. V. 70. Iss. 4. P. 330–342. https://doi.org/10.1093/biosci/biaa002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).