The Effect of Natural and Anthropogenic Climate Changes on River Runoff and Snow Water Equivalent in the Lena River Basin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The hydrological models ECOMAG and HBV were used to calculate the characteristics of river flow and snow Water Equivalent in the Lena River basin. The input data included the meteorological observations and the results of calculations with global climate models with the implementation of scenarios of natural climate conditions, taking into account the anthropogenic effect on climate. The calculations were made for a historical period (1970–1999) and up to the end of the XXI century. Hydrological models for several hydrometric gages in the Lena basin were calibrated and verified. The simulation of the annual and seasonal runoff using the climate model data was evaluated by comparison with observation data. According to the results using numerical experiments over the historical period, the increase in the Lena runoff is mostly due to natural climate variations. Conversely, in the XXI century, the anthropogenic climate changes determine the specific features of the regime of river runoff and snow cover. The warming caused by an increase in greenhouse gas concentrations in the atmosphere leads to an increase in snow water equivalent and transformation of the hydrological regime in the area, in particular, to an earlier beginning of active snow melting (up to two weeks) and higher maximal discharges during spring flood. At the same time, the volume of runoff decreases in the summer and increases in the autumn and winter.

About the authors

A. S. Kalugin

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

Email: kalugin-andrei@mail.ru
Россия, 119333, Москва

S. Yu. Lupakov

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia; Pacific Geographical Institute, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia

Author for correspondence.
Email: kalugin-andrei@mail.ru
Россия, 119333, Москва; Россия, 690041, Владивосток

References

  1. Гельфан А.Н., Гусев Е.М., Калугин А.С., Крыленко И.Н., Мотовилов Ю.Г., Насонова О.Н., Миллионщикова Т.Д., Фролова Н.Л. Сток рек России при происходящих и прогнозируемых изменениях климата: обзор публикаций. 2. Влияние изменения климата на водный режим рек России в XXI веке // Вод. ресурсы. 2022. Т. 49. № 3. С. 270–285. https://doi.org/10.31857/S0321059622030051
  2. Гельфан А.Н., Калугин А.С., Крыленко И.Н., Насонова О.Н., Гусев Е.М., Ковалев Е.Э. О проблеме тестирования гидрологической модели для оценки влияния изменений климата на речной сток // Метеорология и гидрология. 2020. № 5. С. 77–85. https://doi.org/10.3103/S1068373920050064
  3. Мотовилов Ю.Г. Гидрологическое моделирование речных бассейнов в различных пространственных масштабах. 1. Алгоритмы генерализации и осреднения // Вод. ресурсы. 2016. Т. 43. С. 243–253. https://doi.org/10.7868/S0321059616030111
  4. Мотовилов Ю.Г., Гельфан А.Н. Модели формирования стока в задачах гидрологии речных бассейнов. М.: РАН, 2018. 300 с.
  5. Bergstrom S. Development and application of a conceptual runoff model for Scandinavian catchments. Norrkoping: Univ. Lund. Bull., 1976. 134 p.
  6. Eisner S., Florke M., Chamorro A., Daggupati P., Donnelly C., Huang J., Hundecha Y., Koch H., Kalugin A., Krylenko I., Mishra V., Piniewski M., Samaniego L., Seidou O., Wallner M., Krysanova V. An ensemble analysis of climate change impacts on stream flow seasonality across 11 large river basins // Clim. Change. 2017. V. 141. P. 401–417. https://doi.org/10.1007/s10584-016-1844-5
  7. Gelfan A., Gustafsson D., Motovilov Yu., Arheimer B., Kalugin A., Krylenko I., Lavrenov A. Climate change impact on the water regime of two great Arctic rivers: modeling and uncertainty issues // Clim. Change. 2017. V. 141. P. 499–515. https://doi.org/10.1007/s10584-016-1710-5
  8. Gelfan A., Kalugin A., Krylenko I., Nasonova O., Gusev Y., Kovalev E. Does a successful comprehensive evaluation increase confidence in a hydrological model intended for climate impact assessment? // Clim. Change. 2020. V. 163. P. 1165–1185. https://doi.org/10.1007/s10584-020-02930-z
  9. Gusev E.M., Nasonova O.N., Kovalev E.E. Change in water availability in territories of river basins located in different regions of the world due to possible climate changes // Arid Ecosystems. 2021. V. 11. P. 221–230. https://doi.org/10.1134/S2079096121030070
  10. Hudson C.E., Thompson J.R. Hydrological modelling of climate change impacts on river flows in Siberia’s Lena River basin and implications for the Atlantic Meridional Overturning Circulation // Hydrol. Res. 2019. V. 50 (6). P. 1577–1595. https://doi.org/10.2166/nh.2019.151
  11. Kalugin A. Climate change attribution in the Lena and Selenga River runoff: an evaluation based on the Earth system and regional hydrological models // Water. 2022a. V. 14 (1). № 118. P. 1–18. https://doi.org/10.3390/w14010118
  12. Kalugin A. Future climate-driven runoff change in the large river basins in Eastern Siberia and the Far East using process-based hydrological models // Water. 2022b. V. 14 (4). № 609. P. 1–22. https://doi.org/10.3390/w14040609
  13. Kalugin A.S. Variations of the present-day annual and seasonal runoff in the Far East and Siberia with the use of regional hydrological and global climate models // Water Resour. 2018. V. 45. № S1. P. S102–S111. https://doi.org/10.1134/S0097807818050366
  14. Krysanova V., Hattermann F. Intercomparison of climate change impacts in 12 large river basins: overview of methods and summary of results // Clim. Change. 2017. V. 141. P. 363–379. https://doi.org/10.1007/s10584-017-1919-y
  15. Magritsky D., Alexeevsky N., Aybulatov D., Fofonova V., Gorelkin A. Features and evaluations of spatial and temporal changes of water runoff, sediment yield and heat flux in the Lena River delta // Polarforschung. 2017. V. 87 (2). P. 89–110. https://doi.org/10.2312/polarforschung.87.2.89
  16. Moriasi D.N., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D., Veith T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations // Trans. ASABE. 2007. V. 50. P. 885–900. https://doi.org/10.13031/2013.23153
  17. Oudin L., Hervieu F., Michel C., Perrin C., Andreassian V., Anctil F., Loumagne C. Which potential evapotranspiration input for a lumped rainfall–runoff model? Pt 2 – Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling // J. Hydrol. 2005. V. 303. P. 290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026
  18. Pechlivanidis I.G., Arheimer B., Donnelly C., Hundecha Y., Huang S., Aich V., Samaniego L., Eisner S., Shi P. Analysis of hydrological extremes at different hydro-climatic regimes under present and future conditions // Clim. Change. 2017. V. 141. P. 467–481. https://doi.org/10.1007/s10584-016-1723-0
  19. Seibert J., Bergstrom S. A retrospective on hydrological catchment modelling based on half a century with the HBV model // Hydrol. Earth Syst. Sci. 2022. V. 26. P. 1371–1388. https://doi.org/10.5194/hess-26-1371-2022
  20. Seibert J., Vis M. Teaching hydrological modelling with a user-friendly catchment-runoff-model software package // Hydrol. Earth Syst. Sci. 2012. V. 16. P. 3315–3325. https://doi.org/10.5194/hess-16-3315-2012
  21. Tananaev N.I., Makarieva O.M., Lebedeva L.S. Trends in annual and extreme flows in the Lena River basin, Northern Eurasia // Geophys. Res. Lett. 2016. V. 43. P. 10 764–10 772. https://doi.org/10.1002/2016GL070796
  22. Uhlenbrook S., Seibert J., Leibundgut C., Rodhe A. Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure // Hydrol. Sci. J. 1999. V. 44. P. 779–797. https://doi.org/10.1080/02626669909492273
  23. Vetter T., Reinhardt J., Flörke M., van Griensven A., Hattermann F., Huang S., Koch H., Pechlivanidis I.G., Plötner S., Seidou O., Su B., Vervoort R.W., Krysanova V. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins // Clim. Change. 2017. V. 141. P. 419–433. https://doi.org/10.1007/s10584-016-1794-y
  24. Warszawski L., Frieler K., Huber V., Piontek F., Serdeczny O., Schewe J. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework // Proc. National Acad. Sci. 2014. V. 111. P. 3228–3232. https://doi.org/10.1073/pnas.1312330110

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (272KB)
3.

Download (230KB)
4.

Download (361KB)
5.

Download (119KB)
6.

Download (144KB)
7.

Download (122KB)

Copyright (c) 2023 А.С. Калугин, С.Ю. Лупаков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies