Ингибиторы транскетолазы Mycobacterium tuberculosis, нацеленные на сайт связывания дифосфата и близлежащий гидрофобный участок
- Авторы: Нилов Д.К.1, Гущина И.В.1, Щербакова Т.А.1, Балдин С.М.1, Швядас В.К.1
-
Учреждения:
- Московский государственный университет имени М.В. Ломоносова
- Выпуск: Том 90, № 2 (2025)
- Страницы: 288-293
- Раздел: Статьи
- URL: https://journals.rcsi.science/0320-9725/article/view/291903
- DOI: https://doi.org/10.31857/S0320972525020089
- EDN: https://elibrary.ru/BLQKDX
- ID: 291903
Цитировать
Аннотация
Транскетолаза Mycobacterium tuberculosis (mbTK) является одним из ключевых ферментов пентозофосфатного пути, важного для выживания бактерий, и представляет собой потенциальную мишень для противотуберкулёзной терапии. Мы обнаружили новый класс конкурентных фурансульфонатных ингибиторов mbTK, способных взаимодействовать как с участком тиаминдифосфатного кофактора, так и с соседним гидрофобным участком Ile211-Leu402-Phe464, подавляя таким образом активность фермента. Наиболее перспективное соединение STK106769, идентифицированное с помощью компьютерного скрининга, ингибирует mbTK со значением IC50 7 мкМ и подавляет рост штамма M. tuberculosis H37Rv. Гидрофобный участок mbTK Ile211-Leu402-Phe464 замещён существенно более полярными остатками в транскетолазе человека, что является важным фактором, определяющим селективность связывания ингибиторов с этими гомологичными ферментами.
Ключевые слова
Об авторах
Д. К. Нилов
Московский государственный университет имени М.В. Ломоносова; Московский государственный университет имени М.В. Ломоносова
Email: vytas@belozersky.msu.ru
НИИ физико-химической биологии имени А.Н. Белозерского, научно-исследовательский вычислительный центр
Россия, 119992 Москва; 119234 МоскваИ. В. Гущина
Московский государственный университет имени М.В. Ломоносова
Email: vytas@belozersky.msu.ru
факультет биоинженерии и биоинформатики
Россия, 119234 МоскваТ. А. Щербакова
Московский государственный университет имени М.В. Ломоносова
Email: vytas@belozersky.msu.ru
НИИ физико-химической биологии имени А.Н. Белозерского
Россия, 119992 МоскваС. М. Балдин
Московский государственный университет имени М.В. Ломоносова; Московский государственный университет имени М.В. Ломоносова
Email: vytas@belozersky.msu.ru
НИИ физико-химической биологии имени А.Н. Белозерского, научно-исследовательский вычислительный центр
Россия, 119992 Москва; 119234 МоскваВ. К. Швядас
Московский государственный университет имени М.В. Ломоносова; Московский государственный университет имени М.В. Ломоносова
Автор, ответственный за переписку.
Email: vytas@belozersky.msu.ru
научно-исследовательский вычислительный центр, факультет биоинженерии и биоинформатики
Россия, 119992 Москва; 119234 МоскваСписок литературы
- Schenk, G., Duggleby, R. G., and Nixon, P. F. (1998) Properties and functions of the thiamin diphosphate dependent enzyme transketolase, Int. J. Biochem. Cell Biol., 30, 1297-1318, https://doi.org/10.1016/s1357-2725(98)00095-8.
- Bunik, V. I., Tylicki, A., and Lukashev, N. V. (2013) Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models, FEBS J., 280, 6412-6442, https://doi.org/10.1111/ febs.12512.
- Kochetov, G. A., and Solovjeva, O. N. (2014) Structure and functioning mechanism of transketolase, Biochim. Biophys. Acta, 1844, 1608-1618, https://doi.org/10.1016/j.bbapap.2014.06.003.
- Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, 393, 537-544, https://doi.org/10.1038/31159.
- Kolly, G. S, Sala, C., Vocat, A., and Cole, S. T. (2014) Assessing essentiality of transketolase in Mycobacterium tuberculosis using an inducible protein degradation system, FEMS Microbiol. Lett., 358, 30-35, https://doi.org/10.1111/1574-6968.12536.
- Wolucka, B. A. (2008) Biosynthesis of D-arabinose in mycobacteria - a novel bacterial pathway with implications for antimycobacterial therapy, FEBS J., 275, 2691-2711, https://doi.org/10.1111/j.1742-4658.2008.06395.x.
- Fullam, E., Pojer, F., Bergfors, T., Jones, T. A., and Cole, S. T. (2012) Structure and function of the transketolase from Mycobacterium tuberculosis and comparison with the human enzyme, Open Biol., 2, 110026, https://doi.org/10.1098/rsob.110026.
- Patani, G. A., and LaVoie, E. J. (1996) Bioisosterism: a rational approach in drug design, Chem. Rev., 96, 3147-3176, https://doi.org/10.1021/cr950066q.
- Guida, W. C., Elliott, R. D., Thomas, H. J., Secrist, J. A., 3rd, Babu, Y. S., et al. (1994) Structure-based design of inhibitors of purine nucleoside phosphorylase. 4. A study of phosphate mimics, J. Med. Chem., 37, 1109-1114, https://doi.org/10.1021/jm00034a008.
- Ryan, A., Polycarpou, E., Lack, N. A., Evangelopoulos, D., Sieg, C., et al. (2017) Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach, Br. J. Pharmacol., 174, 2209-2224, https://doi.org/10.1111/bph.13810.
- Brear, P., Telford, J., Taylor, G. L., and Westwood, N. J. (2012) Synthesis and structural characterisation of selective non-carbohydrate-based inhibitors of bacterial sialidases, Chembiochem, 13, 2374-2383, https://doi.org/10.1002/cbic.201200433.
- Liu, C. I., Liu, G. Y., Song, Y., Yin, F., Hensler, M. E., et al. (2008) A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence, Science, 319, 1391-1394, https://doi.org/10.1126/science.1153018.
- Гущина И. В., Нилов Д. К., Щербакова Т. А., Балдин С. М., Швядас В. К. (2023) Поиск ингибиторов транскетолазы из Mycobacterium tuberculosis в ряду сульфозамещенных соединений, Acta Naturae, 15, 81-83, https://doi.org/10.32607/actanaturae.15709.
- Stroganov, O. V., Novikov, F. N., Stroylov, V. S., Kulkov, V., and Chilov, G. G. (2008) Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening, J. Chem. Inf. Model., 48, 2371-2385, https://doi.org/10.1021/ci800166p.
- Novikov, F. N., Stroylov, V. S., Zeifman, A. A., Stroganov, O. V., Kulkov, V., et al. (2012) Lead Finder docking and virtual screening evaluation with Astex and DUD test sets, J. Comput. Aided Mol. Des., 26, 725-735, https://doi.org/10.1007/s10822-012-9549-y.
- Novikov, F. N., Stroylov, V. S., Stroganov, O. V., and Chilov, G. G. (2010) Improving performance of docking-based virtual screening by structural filtration, J. Mol. Model., 16, 1223-1230, https://doi.org/10.1007/s00894-009-0633-8.
- Gushchina, I. V., Polenova, A. M., Suplatov, D. A., Švedas, V. K., and Nilov, D. K. (2020) vsFilt: a tool to improve virtual screening by structural filtration of docking poses, J. Chem. Inf. Model., 60, 3692-3696, https://doi.org/10.1021/acs.jcim.0c00303.
- Evteev, S., Nilov, D., Polenova, A., and Švedas, V. (2021) Bifunctional inhibitors of influenza virus neuraminidase: molecular design of a sulfonamide linker, Int. J. Mol. Sci., 22, 13112, https://doi.org/10.3390/ijms222313112.
- Nilov, D. K., Schmidtke, M., Makarov, V. A., and Švedas, V. K. (2022) Search for ligands complementary to the 430-cavity of influenza virus neuraminidase by virtual screening, Supercomp. Front. Innovat., 9, 79-83, https://doi.org/10.14529/jsfi220207.
- Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics, J. Mol. Graph., 14, 33-38, https://doi.org/10.1016/0263-7855(96)00018-5.
- Kochetov, G. A. (1982) Transketolase from yeast, rat liver, and pig liver, Methods Enzymol., 90, 209-223, https://doi.org/10.1016/s0076-6879(82)90128-8.
- Щербакова Т. А., Балдин С. М., Шумков М. С., Гущина И. В., Нилов Д. К., Швядас В. К. (2022) Выделение и биохимическая характеристика рекомбинантной транскетолазы Mycobacterium tuberculosis, Acta Naturae, 14, 93-97, https://doi.org/10.32607/actanaturae.11713.
- Sebaugh, J. L. (2011) Guidelines for accurate EC50/IC50 estimation, Pharm. Stat., 10, 128-134, https://doi.org/ 10.1002/pst.426.
- Sosunov, V., Mischenko, V., Eruslanov, B., Svetoch, E., Shakina, Y., et al. (2007) Antimycobacterial activity of bacteriocins and their complexes with liposomes, J. Antimicrob. Chemother., 59, 919-925, https://doi.org/10.1093/jac/dkm053.
- Lyadova, I., Yeremeev, V., Majorov, K., Nikonenko, B., Khaidukov, S., et al. (1998) An ex vivo study of T lymphocytes recovered from the lungs of I/St mice infected with and susceptible to Mycobacterium tuberculosis, Infect. Immun., 66, 4981-4988, https://doi.org/10.1128/IAI.66.10.4981-4988.1998.
- Mitschke, L., Parthier, C., Schröder-Tittmann, K., Coy, J., Lüdtke, S., et al. (2010) The crystal structure of human transketolase and new insights into its mode of action, J. Biol. Chem., 285, 31559-31570, https://doi.org/10.1074/jbc.M110.149955.
Дополнительные файлы
