MEMBRANE GUANYLATE CYCLASES AS POTENTIAL TARGETS OF GUANYLINS
- 作者: Snigireva E.D1, Smirnova O.V1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 90, 编号 9 (2025)
- 页面: 1247-1267
- 栏目: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/355094
- DOI: https://doi.org/10.31857/S0320972525090016
- ID: 355094
如何引用文章
详细
关键词
作者简介
E. Snigireva
Lomonosov Moscow State University
Email: ilizotra@gmail.com
Faculty of Biology Moscow, Russia
O. Smirnova
Lomonosov Moscow State UniversityFaculty of Biology Moscow, Russia
参考
- Wiegand, R. C., Kato, J., and Currie, M. G. (1992) Rat guanylin cDNA: characterization of the precursor of an endogenous activator of intestinal guanylate cyclase, Biochem. Biophys. Res. Commun., 185, 812-817, https://doi.org/10.1016/0006-291X(92)91699-Q.
- Wiegand, R. C., Kato, J., Huang, M. D., Fok, K. F., Kachur, J. F., and Currie, M. G. (1992) Human guanylin: cDNA isolation, structure, and activity, FEBS Lett., 311, 150-154, https://doi.org/10.1016/0014-5793(92)81387-2.
- Miyazato, M., Nakazato, M., Matsukura, S., Kangawa, K., and Matsuo, H. (1996) Uroguanylin gene expression in the alimentary tract and extra-gastrointestinal tissues, FEBS Lett., 398, 170-174, https://doi.org/10.1016/S00145793(96)01235-5.
- Samanta, S., and Chaudhuri, A. G. (2021) Guanylin and uroguanylin: a promising nexus in intestinal electrolyte and fluid homeostasis, J. Physiol. Pharmacol., 72, 1-10, https://doi.org/10.26402/JPP.2021.5.02.
- Schulz, A., Marx, U. C., Tidten, N., Lauber, T., Hidaka, Y., and Adermann, K. (2005) Side chain contributions to the interconversion of the topological isomers of guanylin-like peptides, J. Pept. Sci., 11, 319-330, https://doi.org/10.1002/psc.625.
- Moss, N. G., Riguera, D. A., Solinga, R. M., Kessler, M. M., Li, X., and Giannella, R. A. (2009) The natriuretic peptide uroguanylin elicits physiologic actions through 2 distinct topoisomers, Hypertension, 53, 867-876, https://doi.org/10.1161/HYPERTENSIONAHA.108.128264.
- Kent Hamra, F., Eber, S. L., Chin, D. T., Currie, M. G., and Forte, L. R. (1997) Regulation of intestinal uroguanylin/ guanylin receptor-mediated responses by mucosal acidity, Proc. Natl. Acad. Sci. U.S.A., 94, 2705-2710, https://doi.org/10.1073/PNAS.94.6.2705.
- Toriano, R., Ozu, M., Politi, M. T., Dorr, R. A., Li, X., and Giannella, R. A. (2011) Uroguanylin regulates net fluid secretion via the NHE2 isoform of the Na/H+ exchanger in an intestinal cellular model, Cell. Physiol. Biochem., 28, 733-742, https://doi.org/10.1159/000335767.
- Lessa, L. M. A., Carraro-Lacroix, L. R., Crajoinas, R. O., Bezerra, C. N., and Girardi, A. C. C. (2012) Mechanisms underlying the inhibitory effects of uroguanylin on NHE3 transport activity in renal proximal tubule, Am. J. Physiol. Renal Physiol., 303, F1435-F1444, https://doi.org/10.1152/ajprenal.00385.2011.
- Chao, A. C., De Sauvage, F. J., Dong, Y. J., Wagner, J. A., Goeddel, D. V., and Gardner, P. (1994) Activation of intestinal CFTR Clchannel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase, EMBO J., 13, 1065-1072, https://doi.org/10.1002/j.1460-2075.1994.tb06355.x.
- Joo, N. S., London, R. M., Kim, H. D., Forte, L. R., and Clarke, L. L. (1998) Regulation of intestinal Cl– and HCO3– secretion by uroguanylin, Am. J. Physiol., 274, G633-G641, https://doi.org/10.1152/ajpgi.1998.274.4.G633.
- Rozenfeld, J., Tal, O., Kladnitsky, O., Adler, L., Cohen, G., Shilo, B. Z., and Muallem, S. (2013) Pendrin, a novel transcriptional target of the uroguanylin system, Cell. Physiol. Biochem., 32, 221-237, https://doi.org/10.1159/000354496.
- Kita, T., Kitamura, K., Sakata, J., and Eto, T. (1999) Marked increase of guanylin secretion in response to salt loading in the rat small intestine, Am. J. Physiol., 277, G960-G966, https://doi.org/10.1152/ajpgi.1999.277.5.G960.
- Sindic, A. (2013) Current understanding of guanylin peptides actions, ISRN Nephrol., 2013, 813648, https://doi.org/10.5402/2013/813648.
- Carrithers, S. L., Ott, C. E., Hill, M. J., Johnson, B. R., Mann, E. A., London, R. E., Goy, M. F., and Forte, L. R. (2004) Guanylin and uroguanylin induce natriuresis in mice lacking guanylyl cyclase-C receptor, Kidney Int., 65, 40-53, https://doi.org/10.1111/j.1523-1755.2004.00375.x.
- Kuhn, M. (2016) Molecular physiology of membrane guanylyl cyclase receptors, Physiol. Rev., 96, 751-804, https://doi.org/10.1152/physrev.00022.2015.
- Sindić, A., Velic, A., Başoglu, C., Hirsch, J. R., Bleich, M., and Kuhl, D. (2005) Uroguanylin and guanylin regulate transport of mouse cortical collecting duct independent of guanylate cyclase C, Kidney Int., 68, 1008-1017, https://doi.org/10.1111/j.1523-1755.2005.00518.x.
- Lehner, U., Velić, A., Schröter, R., Schlatter, E., and Sindić, A. (2007) Ligands and signaling of the G-protein-coupled receptor GPR14, expressed in human kidney cells, Cell. Physiol. Biochem., 20, 181-192, https://doi.org/10.1159/000104165.
- Wilson, E. M., and Chinkers, M. (1995) Identification of sequences mediating guanylyl cyclase dimerization, Biochemistry, 34, 4696-4701, https://doi.org/10.1021/bi00014a025.
- Chinkers, M., and Garbers, D. L. (1989) The protein kinase domain of the ANP receptor is required for signaling, Science, 245, 1392-1394, https://doi.org/10.1126/science.2571188.
- Foster, D. C., and Garbers, D. L. (1998) Dual role for adenine nucleotides in the regulation of the atrial natriuretic peptide receptor, guanylyl cyclase-A, J. Biol. Chem., 273, 16311-16318, https://doi.org/10.1074/jbc.273.26.16311.
- Duda, T. (2010) Atrial natriuretic factor-receptor guanylate cyclase signal transduction mechanism, Mol. Cell. Biochem., 334, 37-51, https://doi.org/10.1007/s11010-009-0335-7.
- Hofmann, F., and Wegener, J. W. (2013) cGMP-dependent protein kinases (cGK), Methods Mol. Biol., 1020, 17-50, https://doi.org/10.1007/978-1-62703-459-3_2.
- Vaandrager, A. B., Hogema, B. M., and De Jonge, H. R. (2005) Molecular properties and biological functions of cGMP-dependent protein kinase II, Front. Biosci., 10, 2150-2164, https://doi.org/10.2741/1687.
- Conti, M., and Beavo, J. (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling, Annu. Rev. Biochem., 76, 481-511, https://doi.org/10.1146/annurev.biochem.76.060305.150444.
- Biel, M., and Michalakis, S. (2009) Cyclic nucleotide-gated channels, Handb. Exp. Pharmacol., 191, 111-136, https://doi.org/10.1007/978-3-540-68964-5_7.
- Hannig, G., Tchernychev, B., Kurtz, C. B., Bryant, A. P., Waldman, S. A., and Schulz, S. (2014) Guanylate cyclase-C/ cGMP: an emerging pathway in the regulation of visceral pain, Front. Mol. Neurosci., 7, 31, https://doi.org/10.3389/fnmol.2014.00031.
- Singh, S., Lowe, D. G., Thorpe, D. S., Rodriguez, H., Garbers, D. L., and Goeddel, D. V. (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases, Nature, 334, 708-712, https://doi.org/10.1038/334708a0.
- L’Etoile, N. D., and Bargmann, C. I. (2000) Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1, Neuron, 25, 575-586, https://doi.org/10.1016/S0896-6273(00)81061-2.
- Ortiz, C. O., Etchberger, J. F., Posy, S. L., Frøkjær-Jensen, C., Lockery, S. R., and Jorgensen, E. M. (2006) Searching for neuronal left/right asymmetry: Genomewide analysis of nematode receptor-type guanylyl cyclases, Genetics, 173, 131-149, https://doi.org/10.1534/genetics.106.055749.
- Fitzpatrick, D. A., O’Halloran, D. M., and Burnell, A. M. (2006) Multiple lineage specific expansions within the guanylyl cyclase gene family, BMC Evol. Biol., 6, 26, https://doi.org/10.1186/1471-2148-6-26.
- Morton, D. B. (2004) Invertebrates yield a plethora of atypical guanylyl cyclases, Mol. Neurobiol., 29, 97-115, https://doi.org/10.1385/MN:29:2:097.
- Tanoue, S., and Nishioka, T. (2001) A receptor-type guanylyl cyclase expression is regulated under circadian clock in peripheral tissues of the silk moth. Light-induced shifting of the expression rhythm and correlation with eclosion, J. Biol. Chem., 276, 46765-46769, https://doi.org/10.1074/jbc.M106980200.
- Morton, D. B., and Nighorn, A. (2003) MsGC-II, a receptor guanylyl cyclase isolated from the CNS of Manduca sexta that is inhibited by calcium, J. Neurochem., 84, 363-372, https://doi.org/10.1046/j.1471-4159.2003.01528.x.
- Ayoob, J. C., Yu, H. H., Terman, J. R., and Kolodkin, A. L. (2004) The Drosophila receptor guanylyl cyclase Gyc76C is required for semaphorin-1a-plexin A-mediated axonal repulsion, J. Neurosci., 24, 6639-6649, https://doi.org/10.1523/JNEUROSCI.1104-04.2004.
- Kusakabe, T., and Suzuki, N. (2000) The guanylyl cyclase family in medaka fish Oryzias latipes, Zool. Sci., 17, 131-140, https://doi.org/10.2108/zsj.17.131.
- Zhang, Y., Chiu, Y. L., Chen, C. J., Ho, Y. Y., Chen, C. A., Chen, C. W., Chen, C. Y., and Chen, C. C. (2019) Discovery of a receptor guanylate cyclase expressed in the sperm flagella of stony corals, Sci. Rep., 9, 15347, https://doi.org/10.1038/s41598-019-51224-7.
- Kashiwagi, M., Miyamoto, K., Takei, Y., and Hirose, S. (1999) Cloning, properties and tissue distribution of natriuretic peptide receptor-A of euryhaline eel, Anguilla japonica, Eur. J. Biochem., 259, 204-211, https://doi.org/10.1046/j.1432-1327.1999.00023.x.
- Katafuchi, T., Takashima, A., Kashiwagi, M., Hagiwara, H., and Hirose, S. (1994) Cloning and expression of eel natriuretic-peptide receptor B and comparison with its mammalian counterparts, Eur. J. Biochem., 222, 835-842, https://doi.org/10.1111/j.1432-1033.1994.tb18930.x.
- Yuge, S., Yamagami, S., Inoue, K., Suzuki, N., and Takei, Y. (2006) Identification of two functional guanylin receptors in eel: multiple hormone-receptor system for osmoregulation in fish intestine and kidney, Gen. Comp. Endocrinol., 149, 10-20, https://doi.org/10.1016/j.ygcen.2006.04.012.
- Toop, T., and Donald, J. A. (2004) Comparative aspects of natriuretic peptide physiology in non-mammalian vertebrates: a review, J. Comp. Physiol. B, 174, 189-204, https://doi.org/10.1007/S00360-003-0408-Y.
- Evans, A. N., Henning, T., Gelsleichter, J., and Nunez, B. S. (2010) Molecular classification of an elasmobranch angiotensin receptor: quantification of angiotensin receptor and natriuretic peptide receptor mRNAs in saltwater and freshwater populations of the Atlantic stingray, Comp Biochem. Physiol. B Biochem. Mol. Biol., 157, 423-431, https://doi.org/10.1016/J.CBPB.2010.09.006.
- Carey, C. M., Apple, S. E., Hilbert, Z. A., Kay, M. S., and Elde, N. C. (2021) Diarrheal pathogens trigger rapid evolution of the guanylate cyclase-C signaling axis in bats, Cell Host Microbe, 29, 1342-1350.e5, https://doi.org/10.1016/J.CHOM.2021.07.005.
- Kuhn, M., Ng, C. K. D., Su, Y. H., Kilić, A., Mitko, D., Bien-Ly, N., Kömüves L. G., and Yang, R. B. (2004) Identification of an orphan guanylate cyclase receptor selectively expressed in mouse testis, Biochem. J., 379, 385-393, https://doi.org/10.1042/BJ20031624.
- Gesemann, M., and Neuhauss, S. C. F. (2020) Selective gene loss of visual and olfactory guanylyl cyclase genes following the two rounds of vertebrate-specific whole-genome duplications, Genome Biol. Evol., 12, 2153-2167, https://doi.org/10.1093/GBE/EVAA192.
- Potter, L. R. (2005) Domain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation, Front. Biosci., 10, 1205-1220, https://doi.org/10.2741/1613.
- Potter, L. R., and Hunter, T. (2001) Guanylyl cyclase-linked natriuretic peptide receptors: structure and regulation, J. Biol. Chem., 276, 6057-6060, https://doi.org/10.1074/JBC.R000033200.
- Heim, J. M., Singh, S., and Gerzer, R. (1996) Effect of glycosylation on cloned ANF-sensitive guanylyl cyclase, Life Sci., 59, https://doi.org/10.1016/0024-3205(96)00306-2.
- Ogawa, H., Qiu, Y., Ogata, C. M., and Misono, K. S. (2004) Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction, J. Biol. Chem., 279, 28625-28631, https://doi.org/10.1074/JBC.M313222200.
- Labrecque, J., Deschênes, J., McNicoll, N., and De Léan, A. (2001) Agonistic induction of a covalent dimer in a mutant of natriuretic peptide receptor-A documents a juxtamembrane interaction that accompanies receptor activation, J. Biol. Chem., 276, 8064-8072, https://doi.org/10.1074/JBC.M005550200.
- Potter, L. R., Abbey-Hosch, S., and Dickey, D. M. (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions, Endocr. Rev., 27, 47-72, https://doi.org/10.1210/ER.2005-0014.
- Duda, T., Pertzev, A., and Sharma, R. K. (2012) Ca2+ modulation of ANF-RGC: new signaling paradigm interlocked with blood pressure regulation, Biochemistry, 51, 9394-9405, https://doi.org/10.1021/BI301176C.
- Potter, L. R., and Garbers, D. L. (1992) Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization, J. Biol. Chem., 267, 14531-14534, https://doi.org/10.1016/S0021-9258(18)42069-8.
- Potter, L. R. (2024) Phosphorylation-dependent regulation of guanylyl cyclase (GC)-A and other membrane GC receptors, Endocr. Rev., 45, https://doi.org/10.1210/ENDREV/BNAE015.
- Potter, L. R., and Hunter, T. (1998) Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor, Mol Cell. Biol., 18, 2164-2172, https://doi.org/10.1128/MCB.18.4.2164.
- Liu, D., Ceddia, R. P., Zhang, W., Shi, F., Fang, H., and Collins, S. (2023) Discovery of another mechanism for the inhibition of particulate guanylyl cyclases by the natriuretic peptide clearance receptor, Proc. Natl. Acad. Sci. USA, 120, e2307882120, https://doi.org/10.1073/PNAS.2307882120.
- Martel, G., Hamet, P., and Tremblay, J. (2010) GREBP, a cGMP-response element-binding protein repressing the transcription of natriuretic peptide receptor 1 (NPR1/GCA), J. Biol. Chem., 285, 20926-20939, https://doi.org/10.1074/JBC.M109.061622.
- Potter, L. R., and Garbers, D. L. (1994) Protein kinase C-dependent desensitization of the atrial natriuretic peptide receptor is mediated by dephosphorylation, J. Biol. Chem., 269, 14636-14642, https://doi.org/10.1016/S00219258(17)36672-3.
- Pedram, A., Razandi, M., Kehrl, J., and Levin, E. R. (2000) Natriuretic peptides inhibit G protein activation. Mediation through cross-talk between cyclic GMP-dependent protein kinase and regulators of G protein-signaling proteins, J. Biol. Chem., 275, 7365-7372, https://doi.org/10.1074/JBC.275.10.7365.
- Kerkelä, R., Ulvila, J., and Magga, J. (2015) Natriuretic peptides in the regulation of cardiovascular physiology and metabolic events, J. Am. Heart Assoc., 4, e002423, https://doi.org/10.1161/JAHA.115.002423.
- Harraz, O. F., Brett, S. E., and Welsh, D. G. (2014) Nitric oxide suppresses vascular voltage-gated T-type Ca2+ channels through cGMP/PKG signaling, Am. J. Physiol. Heart Circ. Physiol., 306, H279-H285, https://doi.org/10.1152/AJPHEART.00743.2013.
- Morgado, M., Cairrão, E., Santos-Silva, A. J., and Verde, I. (2012) Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle, Cell. Mol. Life Sci., 69, 247-266, https://doi.org/10.1007/S00018-011-0815-2.
- Theilig, F., and Wu, Q. (2015) ANP-induced signaling cascade and its implications in renal pathophysiology, Am. J. Physiol. Renal Physiol., 308, F1047-F1055, https://doi.org/10.1152/AJPRENAL.00164.2014.
- Marin-Grez, M., Fleming, J. T., and Steinhausen, M. (1986) Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney, Nature, 324, 473-476, https://doi.org/10.1038/324473A0.
- Rubattu, S., and Gallo, G. (2022) The natriuretic peptides for hypertension treatment, High Blood Press. Cardiovasc. Prevent., 29, 15-21, https://doi.org/10.1007/S40292-021-00483-5.
- Klaiber, M., Dankworth, B., Kruse, M., Hartmann, M., Nikolaev, V. O., Yang, R. B., Völker, K., Gaßner, B., Oberwinkler, H., Feil, R., Freichel, M., Groschner, K., Skryabin, B. V., Frantz, S., Birnbaumer, L., Pongs, O., and Kuhn, M. (2011) A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide, Proc. Natl. Acad. Sci. USA, 108, 18500-18505, https://doi.org/10.1073/PNAS.1103300108.
- Jensen, M., Heinl, E. S., Federlein, A., Schwartz, U., Lund, L., Madsen, K., Jensen, B. L., and Schweda, F. (2024) Identification of natriuretic peptide receptor A-related gene expression signatures in podocytes in vivo reveals baseline control of protective pathways, Am. J. Physiol. Renal Physiol., 327, F806-F821, https://doi.org/10.1152/AJPRENAL.00394.2023.
- Ramasamy, C., Neelamegam, K., Ramachandran, S., Xia, H., Kapusta, D. R., Danesh, F. R., and Pandey, K. N. (2024) Podocyte cell-specific Npr1 is required for blood pressure and renal homeostasis in male and female mice: role of sex-specific differences, Physiol. Genomics, 56, 672-690, https://doi.org/10.1152/PHYSIOLGENOMICS.00137.2023.
- Hirsch, J. R., and Schlatter, E. (2003) Genistein potentiates the ANP effect on a K+-conductance in HEK-293 cells, Cell. Physiol. Biochem., 13, 223-228, https://doi.org/10.1159/000072425.
- Guo, L. J., Alli, A. A., Eaton, D. C., and Bao, H. F. (2013) ENaC is regulated by natriuretic peptide receptor-dependent cGMP signaling, Am. J. Physiol. Renal Physiol., 304, 930-937, https://doi.org/10.1152/AJPRENAL.00638.2012.
- Light, D. B., Corbin, J. D., and Stanton, B. A. (1990) Dual ion-channel regulation by cyclic GMP and cyclic GMPdependent protein kinase, Nature, 344, 336-339, https://doi.org/10.1038/344336A0.
- Winaver, J., Burnett, J. C., Tyce, G. M., and Dousa, T. P. (1990) ANP inhibits Na+-H+ antiport in proximal tubular brush border membrane: role of dopamine, Kidney Int., 38, 1133-1140, https://doi.org/10.1038/KI.1990.323.
- Holtbäck, U., Brismar, H., DiBona, G. F., Fu, M., Greengard, P., and Aperia, A. (1999) Receptor recruitment: a mechanism for interactions between G protein-coupled receptors, Proc. Natl. Acad. Sci. USA, 96, 7271-7275, https://doi.org/10.1073/PNAS.96.13.7271.
- Choi, M. R., Rukavina Mikusic, N. L., Kouyoumdzian, N. M., Kravetz, M. C., and Fernández, B. E. (2014) Atrial natriuretic peptide and renal dopaminergic system: a positive friendly relationship? Biomed Res. Int., 2014, 710781, https://doi.org/10.1155/2014/710781.
- Brismar, H., Holtbäck, U., and Aperia, A. (2000) Mechanisms by which intrarenal dopamine and ANP interact to regulate sodium metabolism, Clin. Exp. Hypertens., 22, 303-307, https://doi.org/10.1081/CEH-100100079.
- Kouyoumdzian, N. M., Mikusic, N. L. R., Kravetz, M. C., Lee, B. M., Carranza, A., Mauro, J. S. D., Pandolfo, M., Gironacci, M. M., Gorzalczany, S., Toblli, J. E., Fernández, B. E., and Choi, M. R. (2016) Atrial natriuretic peptide stimulates dopamine tubular transport by organic cation transporters: a novel mechanism to enhance renal sodium excretion, PLoS One, 11, e0157487, https://doi.org/10.1371/JOURNAL.PONE.0157487.
- Li, X. C., Wang, C. H., Hassan, R., Katsurada, A., Sato, R., and Zhuo, J. L. (2024) Deletion of AT1a receptors selectively in the proximal tubules of the kidney alters the hypotensive and natriuretic response to atrial natriuretic peptide via NPRA/cGMP/NO signaling, Am. J. Physiol. Renal Physiol., 327, F946-F956, https://doi.org/10.1152/AJPRENAL.00160.2024.
- Nakagawa, H., Oberwinkler, H., Nikolaev, V. O., Gaßner, B., Umbenhauer, S., Wagner, H., Saito, Y., Baba, H. A., Frantz, S., and Kuhn, M. (2014) Atrial natriuretic peptide locally counteracts the deleterious effects of cardiomyocyte mineralocorticoid receptor activation, Circ. Heart Fail, 7, 814-821, https://doi.org/10.1161/CIRCHEARTFAILURE.113.000885.
- Moro, C. (2013) Natriuretic peptides and fat metabolism, Curr. Opin. Clin. Nutr. Metab. Care, 16, 645-649, https://doi.org/10.1097/MCO.0B013E32836510ED.
- Bordicchia, M., Liu, D., Amri, E. Z., Ailhaud, G., Dessì-Fulgheri, P., Zhang, C., Takahashi, N., Sarzani, R., and Collins, S. (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes, J. Clin. Invest., 122, 1022-1036, https://doi.org/10.1172/JCI59701.
- Schulz, S. (2005) C-type natriuretic peptide and guanylyl cyclase B receptor, Peptides (N.Y.), 26, 1024-1034, https://doi.org/10.1016/J.PEPTIDES.2004.08.027.
- Goetze, J. P., Bruneau, B. G., Ramos, H. R., Ogawa, T., de Bold, M. K., and de Bold, A. J. (2020) Cardiac natriuretic peptides, Nat. Rev. Cardiol., 17, 698-717, https://doi.org/10.1038/S41569-020-0381-0.
- Fenrick, R., Bouchard, N., McNicoll, N., and De Léan, A. (1997) Glycosylation of asparagine 24 of the natriuretic peptide receptor-B is crucial for the formation of a competent ligand binding domain, Mol. Cell. Biochem., 173, 25-32, https://doi.org/10.1023/A:1006855522272.
- Potter, L. R. (2011) Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases, Pharmacol. Ther., 130, 71-82, https://doi.org/10.1016/J.PHARMTHERA.2010.12.005.
- Nakagawa, Y., and Nishikimi, T. (2022) CNP, the third natriuretic peptide: its biology and significance to the cardiovascular system, Biology (Basel), 11, 986, https://doi.org/10.3390/BIOLOGY11070986.
- Nagase, M., Katafuchi, T., Hirose, S., and Fujita, T. (1997) Tissue distribution and localization of natriuretic peptide receptor subtypes in stroke-prone spontaneously hypertensive rats, J. Hypertens., 15, 1235-1243, https://doi.org/10.1097/00004872-199715110-00007.
- Hagiwara, H., Sakaguchi, H., Itakura, M., Yoshimoto, T., Furuya, M., Tanaka, S., and Hirose, S. (1994) Autocrine regulation of rat chondrocyte proliferation by natriuretic peptide C and its receptor, natriuretic peptide receptor-B, J. Biol. Chem., 269, 10729-10733, https://doi.org/10.1016/S0021-9258(17)34119-4.
- Potter, L. R., and Hunter, T. (1998) Identification and characterization of the major phosphorylation sites of the B-type natriuretic peptide receptor, J. Biol. Chem., 273, 15533-15539, https://doi.org/10.1074/JBC.273.25.15533.
- Potter, L. R., and Hunter, T. (2000) Activation of protein kinase C stimulates the dephosphorylation of natriuretic peptide receptor-B at a single serine residue: a possible mechanism of heterologous desensitization, J. Biol. Chem., 275, 31099-31106, https://doi.org/10.1074/JBC.M005506200.
- Chrisman, T. D., Perkins, D. T., and Garbers, D. L. (2003) Identification of a potent serum factor that causes desensitization of the receptor for C-Type natriuretic peptide, Cell Commun. Signal, 1, 4, https://doi.org/10.1186/1478-811X-1-4.
- Abbey, S. E., and Potter, L. R. (2003) Lysophosphatidic acid inhibits C-type natriuretic peptide activation of guanylyl cyclase-B, Endocrinology, 144, 240-246, https://doi.org/10.1210/EN.2002-220702.
- Abbey, S. E., and Potter, L. R. (2002) Vasopressin-dependent inhibition of the C-type natriuretic peptide receptor, NPR-B/GC-B, requires elevated intracellular calcium concentrations, J. Biol. Chem., 277, 42423-42430, https://doi.org/10.1074/JBC.M206686200.
- Lui, J. C., Nilsson, O., and Baron, J. (2014) Recent insights into the regulation of the growth plate, J. Mol. Endocrinol., 53, T1-T9, https://doi.org/10.1530/JME-14-0022.
- Yasoda, A., and Nakao, K. (2010) Translational research of C-type natriuretic peptide (CNP) into skeletal dysplasias, Endocr. J., 57, 659-666, https://doi.org/10.1507/ENDOCRJ.K10E-164.
- Pfeifer, A., Aszódi, A., Seidler, U., Ruth, P., Hofmann, F., and Fässler, R. (1996) Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II, Science, 274, 2082-2086, https://doi.org/10.1126/SCIENCE.274.5295.2082.
- Tsuji, T., Kiyosu, C., Akiyama, K., and Kunieda, T. (2012) CNP/NPR2 signaling maintains oocyte meiotic arrest in early antral follicles and is suppressed by EGFR-mediated signaling in preovulatory follicles, Mol. Reprod. Dev., 79, 795-802, https://doi.org/10.1002/MRD.22114.
- Wu, K., Mei, C., Chen, Y., Guo, L., Yu, Y., and Huang, D. (2019) C-type natriuretic peptide regulates sperm capacitation by the cGMP/PKG signalling pathway via Ca2+ influx and tyrosine phosphorylation, Reprod. Biomed. Online, 38, 289-299, https://doi.org/10.1016/j.rbmo.2018.11.025.
- Zhang, M., Su, Y. Q., Sugiura, K., Xia, G., and Eppig, J. J. (2010) Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes, Science, 330, 366-369, https://doi.org/10.1126/SCIENCE.1193573.
- Shuhaibar, L. C., Egbert, J. R., Norris, R. P., Lampe, P. D., Nikolaev, V. O., Thunemann, M., Wen, L., Feil, R., and Jaffe, L. A. (2015) Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles, Proc. Natl. Acad. Sci. USA, 112, 5527-5532, https://doi.org/10.1073/PNAS.1423598112.
- Bornslaeger, E. A., Mattei, P., and Schultz, R. M. (1986) Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation, Dev. Biol., 114, 453-462, https://doi.org/10.1016/0012-1606(86)90209-5.
- Zhao, H., Yu, Y., Mei, C., Zhang, T., Kang, Y., Li, N., and Huang, D. (2023) Effect of C-type natriuretic peptide (CNP) on spermatozoa maturation in adult rat epididymis, Curr. Issues Mol. Biol., 45, 1681-1692, https://doi.org/10.3390/CIMB45020108.
- Wang, Z., Wei, H., Wu, Z., Zhang, X., Sun, Y., Gao, L., Zhang, W., Su, Y. Q., and Zhang, M. (2022) The oocyte cumulus complex regulates mouse sperm migration in the oviduct, Commun. Biol., 5, 1327, https://doi.org/10.1038/S42003-022-04287-8.
- Yamahara, K., Itoh, H., Chun, T. H., Ogawa, Y., Yamashita, J., Sawada, N., Fukunaga, Y., Sone, M., YurugiKobayashi, T., Miyashita, K., Tsujimoto, H., Kook, H., Feil, R., Garbers, D. L., Hofmann, F., and Nakao, K. (2003) Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration, Proc. Natl. Acad. Sci. USA, 100, 3404-3409, https://doi.org/10.1073/PNAS.0538059100.
- Lumsden, N. G., Khambata, R. S., and Hobbs, A. J. (2010) C-type natriuretic peptide (CNP): cardiovascular roles and potential as a therapeutic target, Curr. Pharm. Des., 16, 4080-4088, https://doi.org/10.2174/138161210794519237.
- Hakki, S., Crane, M., Hugues, M., O'Hanley, P., and Waldman, S. A. (1993) Solubilization and characterization of functionally coupled Escherichia coli heat-stable toxin receptors and particulate guanylate cyclase associated with the cytoskeleton compartment of intestinal membranes, Int. J. Biochem., 25, 557-566, https://doi.org/10.1016/0020-711X(93)90664-Z.
- Ghanekar, Y., Chandrashaker, A., Tatu, U., and Visweswariah, S. S. (2004) Glycosylation of the receptor guanylate cyclase C: role in ligand binding and catalytic activity, Biochem. J., 379, 653-663, https://doi.org/10.1042/BJ20040001.
- Hasegawa, M., Matsumoto-Ishikawa, Y., Hijikata, A., Hidaka, Y., Go, M., and Shimonishi, Y. (2005) Disulfide linkages and a three-dimensional structure model of the extracellular ligand-binding domain of guanylyl cyclase C, Protein J., 24, 315-325, https://doi.org/10.1007/S10930-005-6752-X.
- Vaandrager, A. B., Van Der Wiel, E., and De Jonge, H. R. (1993) Heat-stable enterotoxin activation of immunopurified guanylyl cyclase C, J. Biol. Chem., 268, 19598-19603, https://doi.org/10.1016/S0021-9258(19)36558-5.
- Vaandrager, A. B., Van Der Wiel, E., Hom, M. L., Luthjens, L. H., and De Jonge, H. R. (1994) Heat-stable enterotoxin receptor/guanylyl cyclase C is an oligomer consisting of functionally distinct subunits, which are non-covalently linked in the intestine, J. Biol. Chem., 269, 16409-16415, https://doi.org/10.1016/S0021-9258(17)34022-X.
- Rudner, X. L., Mandal, K. K., De Sauvage, F. J., Kindman, L. A., and Almenoff, J. S. (1995) Regulation of cell signaling by the cytoplasmic domains of the heat-stable enterotoxin receptor: identification of autoinhibitory and activating motifs, Proc. Natl. Acad. Sci. USA, 92, 5169-5173, https://doi.org/10.1073/PNAS.92.11.5169.
- Weiglmeier, P. R., Rösch, P., and Berkner, H. (2010) Cure and curse: E. coli heat-stable enterotoxin and its receptor guanylyl cyclase C, Toxins (Basel), 2, 2213-2229, https://doi.org/10.3390/TOXINS2092213.
- Basu, N., Arshad, N., and Visweswariah, S. S. (2010) Receptor guanylyl cyclase C (GC-C): regulation and signal transduction, Mol. Cell Biochem., 334, 67-80, https://doi.org/10.1007/s11010-009-0324-x.
- Carrithers, S. L., Taylor, B., Cai, W. Y., Johnson, B. R., Ott, C. E., Greenberg, R. N., and Jackson, B. A. (2000) Guanylyl cyclase-C receptor mRNA distribution along the rat nephron, Regul. Pept., 95, 65-74, https://doi.org/10.1016/S0167-0115(00)00139-7.
- Qian, X., Moss, N. G., Fellner, R. C., Taylor-Blake, B., and Goy, M. F. (2011) The rat kidney contains high levels of prouroguanylin (the uroguanylin precursor) but does not express GC-C (the enteric uroguanylin receptor), Am. J. Physiol. Renal Physiol., 300, F561-F573, https://doi.org/10.1152/AJPRENAL.00282.2010.
- Spreca, A., Simonetti, S., and Grazia Rambotti, M. (2000) Atrial natriuretic peptide and guanylin-activated guanylate cyclase isoforms in human sweat glands, Histochem. J., 32, 725-731, https://doi.org/10.1023/A:1004149010623.
- Valentino, M. A., Lin, J. E., Snook, A. E., Li, P., Kim, G. W., Marszalowicz, G., Magee, M. S., Hyslop, T., Schulz, S., and Waldman, S. A. (2011) A uroguanylin-GUCY2C endocrine axis regulates feeding in mice, J. Clin. Invest., 121, 3578-3588, https://doi.org/10.1172/JCI57925.
- Dugandzic, A., Ratko, M., and Habek, N. (2020) Anxiety-like behavior in female mice changes by feeding, possible effect of guanylate cyclase C, Eur. J. Neurosci., 52, 2781-2790, https://doi.org/10.1111/EJN.14607.
- Habek, N., Dobrivojević Radmilović, M., Kordić, M., Ilić, K., Grgić, S., Farkaš, V., Bagarić, R., Škokić, S., Švarc, A., and Dugandžić, A. (2020) Activation of brown adipose tissue in diet-induced thermogenesis is GC-C dependent, Pflugers Arch., 472, 405-417, https://doi.org/10.1007/S00424-020-02347-8.
- Gong, R., Ding, C., Hu, J., Lu, Y., Liu, F., Mann, E., Xu, F., Cohen, M. B., and Luo, M. (2011) Role for the membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior, Science, 333, 1642-1646, https://doi.org/10.1126/SCIENCE.1207675.
- Kim, G. W., Lin, J. E., Snook, A. E., Aing, A. S., Merlino, D. J., Li, P., and Waldman, S. A. (2016) Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity, Nutr. Diabetes, 6, e211, https://doi.org/10.1038/NUTD.2016.18.
- Habek, N., Ratko, M., and Dugandžić, A. (2021) Uroguanylin increases Ca2+ concentration in astrocytes via guanylate cyclase C-independent signaling pathway, Croat. Med. J., 62, 250-263, https://doi.org/10.3325/CMJ.2021.62.250.
- Bhandari, R., Srinivasan, N., Mahaboobi, Ghanekar, Y., Suguna, K., and Visweswariah, S. S. (2001) Functional inactivation of the human guanylyl cyclase C receptor: modeling and mutation of the protein kinase-like domain, Biochemistry, 40, 9196-9206, https://doi.org/10.1021/BI002595G.
- Crane, J. K., and Shanks, K. L. (1996) Phosphorylation and activation of the intestinal guanylyl cyclase receptor for Escherichia coli heat-stable toxin by protein kinase C, Mol. Cell Biochem., 165, 111-120, https://doi.org/10.1007/BF00229472.
- Fawcus, K., Gorton, V. J., Lucas, M. L., and McEwan, G. T. A. (1997) Stimulation of three distinct guanylate cyclases induces mucosal surface alkalinisation in rat small intestine in vitro, Comp. Biochem. Physiol. A Physiol., 118, 291-295, https://doi.org/10.1016/S0300-9629(96)00307-6.
- Waldman, S. A., and Camilleri, M. (2018) Guanylate cyclase-C as a therapeutic target in gastrointestinal disorders, Gut, 67, 1543-1552, https://doi.org/10.1136/gutjnl-2018-316029.
- Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002) The protein kinase complement of the human genome, Science, 298, 1912-1934, https://doi.org/10.1126/SCIENCE.1075762.
- Zimmerman, A. D., Nagy, C. R., and Munger, S. D. (2020) Sensory neurons expressing the atypical olfactory receptor guanylyl cyclase D are required for the acquisition of odor preferences by mice in diverse social contexts, Physiol. Behav., 227, 113150, https://doi.org/10.1016/j.physbeh.2020.113150.
- Mamasuew, K., Breer, H., and Fleischer, J. (2008) Grueneberg ganglion neurons respond to cool ambient temperatures, Eur. J. Neurosci., 28, 1775-1785, https://doi.org/10.1111/J.1460-9568.2008.06465.X.
- Brechbühl, J., Moine, F., Klaey, M., Nenniger-Tosato, M., Hurni, N., Sporkert, F., Giroud, C., and Broillet, M. C. (2013) Mouse alarm pheromone shares structural similarity with predator scents, Proc. Natl. Acad. Sci. USA, 110, 4762-4767, https://doi.org/10.1073/PNAS.1214249110.
- Fleischer, J. (2021) The Grueneberg ganglion: signal transduction and coding in an olfactory and thermosensory organ involved in the detection of alarm pheromones and predator-secreted kairomones, Cell Tissue Res., 383, 535-548, https://doi.org/10.1007/S00441-020-03380-W.
- Sun, L., Wang, H., Hu, J., Han, J., Matsunami, H., and Luo, M. (2009) Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate, Proc. Natl. Acad. Sci. USA, 106, 2041-2046, https://doi.org/10.1073/PNAS.0812220106.
- Hu, J., Zhong, C., Ding, C., Chi, Q., Walz, A., Mombaerts, P., Matsunami, H., and Luo, M. (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse, Science (1979), 317, 953-957, https://doi.org/10.1126/SCIENCE.1144233.
- Juilfs, D. M., Fülle, H. J., Zhao, A. Z., Houslay, M. D., Garbers, D. L., and Beavo, J. A. (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway, Proc. Natl. Acad. Sci. USA, 94, 3388-3395, https://doi.org/10.1073/PNAS.94.7.3388.
- Yang, R. B., and Garbers, D. L. (1997) Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers, J. Biol. Chem., 272, 13738-13742, https://doi.org/10.1074/JBC.272.21.13738.
- Yang, R. B., Foster, D. C., Garbers, D. L., and Fülle, H. J. (1995) Two membrane forms of guanylyl cyclase found in the eye, Proc. Natl. Acad. Sci. USA, 92, 602-606, https://doi.org/10.1073/PNAS.92.2.602.
- Ames, J. B. (2022) Structural basis of retinal membrane guanylate cyclase regulation by GCAP1 and RD3, Front. Mol. Neurosci., 15, 988142, https://doi.org/10.3389/FNMOL.2022.988142.
- Goraczniak, R. M., Duda, T., Sitaramayya, A., and Sharma, R. K. (1994) Structural and functional characterization of the rod outer segment membrane guanylate cyclase, Biochem. J., 302, 455-461, https://doi.org/10.1042/BJ3020455.
- Shyjan, A. W., de Sauvage, F. J., Gillett, N. A., Goeddel, D. V., and Lowe, D. G. (1992) Molecular cloning of a retina-specific membrane guanylyl cyclase, Neuron, 9, 727-737, https://doi.org/10.1016/0896-6273(92)90035-C.
- Takei, Y. (2022) Evolution of the membrane/particulate guanylyl cyclase: from physicochemical sensors to hormone receptors, Gen. Comp. Endocrinol., 315, https://doi.org/10.1016/J.YGCEN.2021.113797.
- Palczewski, K., Subbaraya, I., Gorczyca, W. A., Helekar, B. S., Ruiz, C. C., Ohguro, H., Huang, J., Zhao, X., Crabb, J. W., Johnson, R. S., Walsh, K. A., Gray-Keller, M. P., Detwiler, P. B., and Baehr, W. (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein, Neuron, 13, 395-404, https://doi.org/10.1016/0896-6273(94)90355-7.
- Takei, Y. (2000) Structural and functional evolution of the natriuretic peptide system in vertebrates, Int. Rev. Cytol., 194, 1-66, https://doi.org/10.1016/S0074-7696(08)62394-3.
- Bereta, G., Wang, B., Kiser, P. D., Baehr, W., Jang, G. F., and Palczewski, K. (2010) A functional kinase homology domain is essential for the activity of photoreceptor guanylate cyclase 1, J. Biol. Chem., 285, 1899-1908, https://doi.org/10.1074/JBC.M109.061713.
- Yamazaki, A., Yu, H., Yamazaki, M., Honkawa, H., Matsuura, I., Usukura, J., and Yamazaki, R. K. (2003) A critical role for ATP in the stimulation of retinal guanylyl cyclase by guanylyl cyclase-activating proteins, J. Biol. Chem., 278, 33150-33160, https://doi.org/10.1074/JBC.M303678200.
- Duda, T., Wen, X. H., Isayama, T., Sharma, R. K., and Makino, C. L. (2015) Bicarbonate modulates photoreceptor guanylate cyclase (ROS-GC) catalytic activity, J. Biol. Chem., 290, 11052-11060, https://doi.org/10.1074/JBC.M115.650408.
- Lamb, T. D. (2020) Evolution of the genes mediating phototransduction in rod and cone photoreceptors, Prog. Retin. Eye Res., 76, 100823, https://doi.org/10.1016/j.preteyeres.2019.100823.
- Wen, X. H., Dizhoor, A. M., and Makino, C. L. (2014) Membrane guanylyl cyclase complexes shape the photoresponses of retinal rods and cones, Front. Mol. Neurosci., 7, 45, https://doi.org/10.3389/FNMOL.2014.00045.
- Bianchi, C., Gutkowska, J., Thibault, G., Garcia, R., Genest, J., and Cantin, M. (1985) Radioautographic localization of 125I-atrial natriuretic factor (ANF) in rat tissues, Histochemistry, 82, 441-452, https://doi.org/10.1007/BF02450479.
- Sabbatini, M. E. (2009) Natriuretic peptides as regulatory mediators of secretory activity in the digestive system, Regul. Pept., 154, 5-15, https://doi.org/10.1016/J.REGPEP.2009.02.009.
- Hirsch, J. R., Kruhøffer, M., Adermann, K., Heitland, A., Maronde, E., Meyer, M., Forssmann, W. G., Herter, P., Plenz, G., and Schlatter, E. (2001) Cellular localization, membrane distribution, and possible function of guanylyl cyclases A and 1 in collecting ducts of rat, Cardiovasc. Res., 51, 553-561, https://doi.org/10.1016/S00086363(00)00297-2.
补充文件

