MEMBRANE GUANYLATE CYCLASES AS POTENTIAL TARGETS OF GUANYLINS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Guanylins are intestinal natriuretic peptides that regulate water-salt balance at the level of the intestine and kidney. The main receptor through which guanylin peptides influence electrolyte balance is membrane guanylate cyclase C. Alternative functions related to food behavior and olfactory preferences are implemented by guanylins through guanylate cyclase D, expressed exclusively in olfactory neurons. At the same time, there is the evidence for alternative yet undefined "natriuretic" receptors activated by guanylin peptides in the absence of guanylate cyclase C. Among these receptors, there are those that trigger a cGMP-dependent signaling pathway that is specific to guanylate cyclases. This review provides a comparative analysis of existing data on different membrane guanylate cyclases, including both early discoveries and modern studies, with an emphasis on considering different types of membrane guanylate cyclases as potential targets of guanylins' action.

Авторлар туралы

E. Snigireva

Lomonosov Moscow State University

Email: ilizotra@gmail.com
Faculty of Biology Moscow, Russia

O. Smirnova

Lomonosov Moscow State University

Faculty of Biology Moscow, Russia

Әдебиет тізімі

  1. Wiegand, R. C., Kato, J., and Currie, M. G. (1992) Rat guanylin cDNA: characterization of the precursor of an endogenous activator of intestinal guanylate cyclase, Biochem. Biophys. Res. Commun., 185, 812-817, https://doi.org/10.1016/0006-291X(92)91699-Q.
  2. Wiegand, R. C., Kato, J., Huang, M. D., Fok, K. F., Kachur, J. F., and Currie, M. G. (1992) Human guanylin: cDNA isolation, structure, and activity, FEBS Lett., 311, 150-154, https://doi.org/10.1016/0014-5793(92)81387-2.
  3. Miyazato, M., Nakazato, M., Matsukura, S., Kangawa, K., and Matsuo, H. (1996) Uroguanylin gene expression in the alimentary tract and extra-gastrointestinal tissues, FEBS Lett., 398, 170-174, https://doi.org/10.1016/S00145793(96)01235-5.
  4. Samanta, S., and Chaudhuri, A. G. (2021) Guanylin and uroguanylin: a promising nexus in intestinal electrolyte and fluid homeostasis, J. Physiol. Pharmacol., 72, 1-10, https://doi.org/10.26402/JPP.2021.5.02.
  5. Schulz, A., Marx, U. C., Tidten, N., Lauber, T., Hidaka, Y., and Adermann, K. (2005) Side chain contributions to the interconversion of the topological isomers of guanylin-like peptides, J. Pept. Sci., 11, 319-330, https://doi.org/10.1002/psc.625.
  6. Moss, N. G., Riguera, D. A., Solinga, R. M., Kessler, M. M., Li, X., and Giannella, R. A. (2009) The natriuretic peptide uroguanylin elicits physiologic actions through 2 distinct topoisomers, Hypertension, 53, 867-876, https://doi.org/10.1161/HYPERTENSIONAHA.108.128264.
  7. Kent Hamra, F., Eber, S. L., Chin, D. T., Currie, M. G., and Forte, L. R. (1997) Regulation of intestinal uroguanylin/ guanylin receptor-mediated responses by mucosal acidity, Proc. Natl. Acad. Sci. U.S.A., 94, 2705-2710, https://doi.org/10.1073/PNAS.94.6.2705.
  8. Toriano, R., Ozu, M., Politi, M. T., Dorr, R. A., Li, X., and Giannella, R. A. (2011) Uroguanylin regulates net fluid secretion via the NHE2 isoform of the Na/H+ exchanger in an intestinal cellular model, Cell. Physiol. Biochem., 28, 733-742, https://doi.org/10.1159/000335767.
  9. Lessa, L. M. A., Carraro-Lacroix, L. R., Crajoinas, R. O., Bezerra, C. N., and Girardi, A. C. C. (2012) Mechanisms underlying the inhibitory effects of uroguanylin on NHE3 transport activity in renal proximal tubule, Am. J. Physiol. Renal Physiol., 303, F1435-F1444, https://doi.org/10.1152/ajprenal.00385.2011.
  10. Chao, A. C., De Sauvage, F. J., Dong, Y. J., Wagner, J. A., Goeddel, D. V., and Gardner, P. (1994) Activation of intestinal CFTR Clchannel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase, EMBO J., 13, 1065-1072, https://doi.org/10.1002/j.1460-2075.1994.tb06355.x.
  11. Joo, N. S., London, R. M., Kim, H. D., Forte, L. R., and Clarke, L. L. (1998) Regulation of intestinal Cl– and HCO3– secretion by uroguanylin, Am. J. Physiol., 274, G633-G641, https://doi.org/10.1152/ajpgi.1998.274.4.G633.
  12. Rozenfeld, J., Tal, O., Kladnitsky, O., Adler, L., Cohen, G., Shilo, B. Z., and Muallem, S. (2013) Pendrin, a novel transcriptional target of the uroguanylin system, Cell. Physiol. Biochem., 32, 221-237, https://doi.org/10.1159/000354496.
  13. Kita, T., Kitamura, K., Sakata, J., and Eto, T. (1999) Marked increase of guanylin secretion in response to salt loading in the rat small intestine, Am. J. Physiol., 277, G960-G966, https://doi.org/10.1152/ajpgi.1999.277.5.G960.
  14. Sindic, A. (2013) Current understanding of guanylin peptides actions, ISRN Nephrol., 2013, 813648, https://doi.org/10.5402/2013/813648.
  15. Carrithers, S. L., Ott, C. E., Hill, M. J., Johnson, B. R., Mann, E. A., London, R. E., Goy, M. F., and Forte, L. R. (2004) Guanylin and uroguanylin induce natriuresis in mice lacking guanylyl cyclase-C receptor, Kidney Int., 65, 40-53, https://doi.org/10.1111/j.1523-1755.2004.00375.x.
  16. Kuhn, M. (2016) Molecular physiology of membrane guanylyl cyclase receptors, Physiol. Rev., 96, 751-804, https://doi.org/10.1152/physrev.00022.2015.
  17. Sindić, A., Velic, A., Başoglu, C., Hirsch, J. R., Bleich, M., and Kuhl, D. (2005) Uroguanylin and guanylin regulate transport of mouse cortical collecting duct independent of guanylate cyclase C, Kidney Int., 68, 1008-1017, https://doi.org/10.1111/j.1523-1755.2005.00518.x.
  18. Lehner, U., Velić, A., Schröter, R., Schlatter, E., and Sindić, A. (2007) Ligands and signaling of the G-protein-coupled receptor GPR14, expressed in human kidney cells, Cell. Physiol. Biochem., 20, 181-192, https://doi.org/10.1159/000104165.
  19. Wilson, E. M., and Chinkers, M. (1995) Identification of sequences mediating guanylyl cyclase dimerization, Biochemistry, 34, 4696-4701, https://doi.org/10.1021/bi00014a025.
  20. Chinkers, M., and Garbers, D. L. (1989) The protein kinase domain of the ANP receptor is required for signaling, Science, 245, 1392-1394, https://doi.org/10.1126/science.2571188.
  21. Foster, D. C., and Garbers, D. L. (1998) Dual role for adenine nucleotides in the regulation of the atrial natriuretic peptide receptor, guanylyl cyclase-A, J. Biol. Chem., 273, 16311-16318, https://doi.org/10.1074/jbc.273.26.16311.
  22. Duda, T. (2010) Atrial natriuretic factor-receptor guanylate cyclase signal transduction mechanism, Mol. Cell. Biochem., 334, 37-51, https://doi.org/10.1007/s11010-009-0335-7.
  23. Hofmann, F., and Wegener, J. W. (2013) cGMP-dependent protein kinases (cGK), Methods Mol. Biol., 1020, 17-50, https://doi.org/10.1007/978-1-62703-459-3_2.
  24. Vaandrager, A. B., Hogema, B. M., and De Jonge, H. R. (2005) Molecular properties and biological functions of cGMP-dependent protein kinase II, Front. Biosci., 10, 2150-2164, https://doi.org/10.2741/1687.
  25. Conti, M., and Beavo, J. (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling, Annu. Rev. Biochem., 76, 481-511, https://doi.org/10.1146/annurev.biochem.76.060305.150444.
  26. Biel, M., and Michalakis, S. (2009) Cyclic nucleotide-gated channels, Handb. Exp. Pharmacol., 191, 111-136, https://doi.org/10.1007/978-3-540-68964-5_7.
  27. Hannig, G., Tchernychev, B., Kurtz, C. B., Bryant, A. P., Waldman, S. A., and Schulz, S. (2014) Guanylate cyclase-C/ cGMP: an emerging pathway in the regulation of visceral pain, Front. Mol. Neurosci., 7, 31, https://doi.org/10.3389/fnmol.2014.00031.
  28. Singh, S., Lowe, D. G., Thorpe, D. S., Rodriguez, H., Garbers, D. L., and Goeddel, D. V. (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases, Nature, 334, 708-712, https://doi.org/10.1038/334708a0.
  29. L’Etoile, N. D., and Bargmann, C. I. (2000) Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1, Neuron, 25, 575-586, https://doi.org/10.1016/S0896-6273(00)81061-2.
  30. Ortiz, C. O., Etchberger, J. F., Posy, S. L., Frøkjær-Jensen, C., Lockery, S. R., and Jorgensen, E. M. (2006) Searching for neuronal left/right asymmetry: Genomewide analysis of nematode receptor-type guanylyl cyclases, Genetics, 173, 131-149, https://doi.org/10.1534/genetics.106.055749.
  31. Fitzpatrick, D. A., O’Halloran, D. M., and Burnell, A. M. (2006) Multiple lineage specific expansions within the guanylyl cyclase gene family, BMC Evol. Biol., 6, 26, https://doi.org/10.1186/1471-2148-6-26.
  32. Morton, D. B. (2004) Invertebrates yield a plethora of atypical guanylyl cyclases, Mol. Neurobiol., 29, 97-115, https://doi.org/10.1385/MN:29:2:097.
  33. Tanoue, S., and Nishioka, T. (2001) A receptor-type guanylyl cyclase expression is regulated under circadian clock in peripheral tissues of the silk moth. Light-induced shifting of the expression rhythm and correlation with eclosion, J. Biol. Chem., 276, 46765-46769, https://doi.org/10.1074/jbc.M106980200.
  34. Morton, D. B., and Nighorn, A. (2003) MsGC-II, a receptor guanylyl cyclase isolated from the CNS of Manduca sexta that is inhibited by calcium, J. Neurochem., 84, 363-372, https://doi.org/10.1046/j.1471-4159.2003.01528.x.
  35. Ayoob, J. C., Yu, H. H., Terman, J. R., and Kolodkin, A. L. (2004) The Drosophila receptor guanylyl cyclase Gyc76C is required for semaphorin-1a-plexin A-mediated axonal repulsion, J. Neurosci., 24, 6639-6649, https://doi.org/10.1523/JNEUROSCI.1104-04.2004.
  36. Kusakabe, T., and Suzuki, N. (2000) The guanylyl cyclase family in medaka fish Oryzias latipes, Zool. Sci., 17, 131-140, https://doi.org/10.2108/zsj.17.131.
  37. Zhang, Y., Chiu, Y. L., Chen, C. J., Ho, Y. Y., Chen, C. A., Chen, C. W., Chen, C. Y., and Chen, C. C. (2019) Discovery of a receptor guanylate cyclase expressed in the sperm flagella of stony corals, Sci. Rep., 9, 15347, https://doi.org/10.1038/s41598-019-51224-7.
  38. Kashiwagi, M., Miyamoto, K., Takei, Y., and Hirose, S. (1999) Cloning, properties and tissue distribution of natriuretic peptide receptor-A of euryhaline eel, Anguilla japonica, Eur. J. Biochem., 259, 204-211, https://doi.org/10.1046/j.1432-1327.1999.00023.x.
  39. Katafuchi, T., Takashima, A., Kashiwagi, M., Hagiwara, H., and Hirose, S. (1994) Cloning and expression of eel natriuretic-peptide receptor B and comparison with its mammalian counterparts, Eur. J. Biochem., 222, 835-842, https://doi.org/10.1111/j.1432-1033.1994.tb18930.x.
  40. Yuge, S., Yamagami, S., Inoue, K., Suzuki, N., and Takei, Y. (2006) Identification of two functional guanylin receptors in eel: multiple hormone-receptor system for osmoregulation in fish intestine and kidney, Gen. Comp. Endocrinol., 149, 10-20, https://doi.org/10.1016/j.ygcen.2006.04.012.
  41. Toop, T., and Donald, J. A. (2004) Comparative aspects of natriuretic peptide physiology in non-mammalian vertebrates: a review, J. Comp. Physiol. B, 174, 189-204, https://doi.org/10.1007/S00360-003-0408-Y.
  42. Evans, A. N., Henning, T., Gelsleichter, J., and Nunez, B. S. (2010) Molecular classification of an elasmobranch angiotensin receptor: quantification of angiotensin receptor and natriuretic peptide receptor mRNAs in saltwater and freshwater populations of the Atlantic stingray, Comp Biochem. Physiol. B Biochem. Mol. Biol., 157, 423-431, https://doi.org/10.1016/J.CBPB.2010.09.006.
  43. Carey, C. M., Apple, S. E., Hilbert, Z. A., Kay, M. S., and Elde, N. C. (2021) Diarrheal pathogens trigger rapid evolution of the guanylate cyclase-C signaling axis in bats, Cell Host Microbe, 29, 1342-1350.e5, https://doi.org/10.1016/J.CHOM.2021.07.005.
  44. Kuhn, M., Ng, C. K. D., Su, Y. H., Kilić, A., Mitko, D., Bien-Ly, N., Kömüves L. G., and Yang, R. B. (2004) Identification of an orphan guanylate cyclase receptor selectively expressed in mouse testis, Biochem. J., 379, 385-393, https://doi.org/10.1042/BJ20031624.
  45. Gesemann, M., and Neuhauss, S. C. F. (2020) Selective gene loss of visual and olfactory guanylyl cyclase genes following the two rounds of vertebrate-specific whole-genome duplications, Genome Biol. Evol., 12, 2153-2167, https://doi.org/10.1093/GBE/EVAA192.
  46. Potter, L. R. (2005) Domain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation, Front. Biosci., 10, 1205-1220, https://doi.org/10.2741/1613.
  47. Potter, L. R., and Hunter, T. (2001) Guanylyl cyclase-linked natriuretic peptide receptors: structure and regulation, J. Biol. Chem., 276, 6057-6060, https://doi.org/10.1074/JBC.R000033200.
  48. Heim, J. M., Singh, S., and Gerzer, R. (1996) Effect of glycosylation on cloned ANF-sensitive guanylyl cyclase, Life Sci., 59, https://doi.org/10.1016/0024-3205(96)00306-2.
  49. Ogawa, H., Qiu, Y., Ogata, C. M., and Misono, K. S. (2004) Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction, J. Biol. Chem., 279, 28625-28631, https://doi.org/10.1074/JBC.M313222200.
  50. Labrecque, J., Deschênes, J., McNicoll, N., and De Léan, A. (2001) Agonistic induction of a covalent dimer in a mutant of natriuretic peptide receptor-A documents a juxtamembrane interaction that accompanies receptor activation, J. Biol. Chem., 276, 8064-8072, https://doi.org/10.1074/JBC.M005550200.
  51. Potter, L. R., Abbey-Hosch, S., and Dickey, D. M. (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions, Endocr. Rev., 27, 47-72, https://doi.org/10.1210/ER.2005-0014.
  52. Duda, T., Pertzev, A., and Sharma, R. K. (2012) Ca2+ modulation of ANF-RGC: new signaling paradigm interlocked with blood pressure regulation, Biochemistry, 51, 9394-9405, https://doi.org/10.1021/BI301176C.
  53. Potter, L. R., and Garbers, D. L. (1992) Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization, J. Biol. Chem., 267, 14531-14534, https://doi.org/10.1016/S0021-9258(18)42069-8.
  54. Potter, L. R. (2024) Phosphorylation-dependent regulation of guanylyl cyclase (GC)-A and other membrane GC receptors, Endocr. Rev., 45, https://doi.org/10.1210/ENDREV/BNAE015.
  55. Potter, L. R., and Hunter, T. (1998) Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor, Mol Cell. Biol., 18, 2164-2172, https://doi.org/10.1128/MCB.18.4.2164.
  56. Liu, D., Ceddia, R. P., Zhang, W., Shi, F., Fang, H., and Collins, S. (2023) Discovery of another mechanism for the inhibition of particulate guanylyl cyclases by the natriuretic peptide clearance receptor, Proc. Natl. Acad. Sci. USA, 120, e2307882120, https://doi.org/10.1073/PNAS.2307882120.
  57. Martel, G., Hamet, P., and Tremblay, J. (2010) GREBP, a cGMP-response element-binding protein repressing the transcription of natriuretic peptide receptor 1 (NPR1/GCA), J. Biol. Chem., 285, 20926-20939, https://doi.org/10.1074/JBC.M109.061622.
  58. Potter, L. R., and Garbers, D. L. (1994) Protein kinase C-dependent desensitization of the atrial natriuretic peptide receptor is mediated by dephosphorylation, J. Biol. Chem., 269, 14636-14642, https://doi.org/10.1016/S00219258(17)36672-3.
  59. Pedram, A., Razandi, M., Kehrl, J., and Levin, E. R. (2000) Natriuretic peptides inhibit G protein activation. Mediation through cross-talk between cyclic GMP-dependent protein kinase and regulators of G protein-signaling proteins, J. Biol. Chem., 275, 7365-7372, https://doi.org/10.1074/JBC.275.10.7365.
  60. Kerkelä, R., Ulvila, J., and Magga, J. (2015) Natriuretic peptides in the regulation of cardiovascular physiology and metabolic events, J. Am. Heart Assoc., 4, e002423, https://doi.org/10.1161/JAHA.115.002423.
  61. Harraz, O. F., Brett, S. E., and Welsh, D. G. (2014) Nitric oxide suppresses vascular voltage-gated T-type Ca2+ channels through cGMP/PKG signaling, Am. J. Physiol. Heart Circ. Physiol., 306, H279-H285, https://doi.org/10.1152/AJPHEART.00743.2013.
  62. Morgado, M., Cairrão, E., Santos-Silva, A. J., and Verde, I. (2012) Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle, Cell. Mol. Life Sci., 69, 247-266, https://doi.org/10.1007/S00018-011-0815-2.
  63. Theilig, F., and Wu, Q. (2015) ANP-induced signaling cascade and its implications in renal pathophysiology, Am. J. Physiol. Renal Physiol., 308, F1047-F1055, https://doi.org/10.1152/AJPRENAL.00164.2014.
  64. Marin-Grez, M., Fleming, J. T., and Steinhausen, M. (1986) Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney, Nature, 324, 473-476, https://doi.org/10.1038/324473A0.
  65. Rubattu, S., and Gallo, G. (2022) The natriuretic peptides for hypertension treatment, High Blood Press. Cardiovasc. Prevent., 29, 15-21, https://doi.org/10.1007/S40292-021-00483-5.
  66. Klaiber, M., Dankworth, B., Kruse, M., Hartmann, M., Nikolaev, V. O., Yang, R. B., Völker, K., Gaßner, B., Oberwinkler, H., Feil, R., Freichel, M., Groschner, K., Skryabin, B. V., Frantz, S., Birnbaumer, L., Pongs, O., and Kuhn, M. (2011) A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide, Proc. Natl. Acad. Sci. USA, 108, 18500-18505, https://doi.org/10.1073/PNAS.1103300108.
  67. Jensen, M., Heinl, E. S., Federlein, A., Schwartz, U., Lund, L., Madsen, K., Jensen, B. L., and Schweda, F. (2024) Identification of natriuretic peptide receptor A-related gene expression signatures in podocytes in vivo reveals baseline control of protective pathways, Am. J. Physiol. Renal Physiol., 327, F806-F821, https://doi.org/10.1152/AJPRENAL.00394.2023.
  68. Ramasamy, C., Neelamegam, K., Ramachandran, S., Xia, H., Kapusta, D. R., Danesh, F. R., and Pandey, K. N. (2024) Podocyte cell-specific Npr1 is required for blood pressure and renal homeostasis in male and female mice: role of sex-specific differences, Physiol. Genomics, 56, 672-690, https://doi.org/10.1152/PHYSIOLGENOMICS.00137.2023.
  69. Hirsch, J. R., and Schlatter, E. (2003) Genistein potentiates the ANP effect on a K+-conductance in HEK-293 cells, Cell. Physiol. Biochem., 13, 223-228, https://doi.org/10.1159/000072425.
  70. Guo, L. J., Alli, A. A., Eaton, D. C., and Bao, H. F. (2013) ENaC is regulated by natriuretic peptide receptor-dependent cGMP signaling, Am. J. Physiol. Renal Physiol., 304, 930-937, https://doi.org/10.1152/AJPRENAL.00638.2012.
  71. Light, D. B., Corbin, J. D., and Stanton, B. A. (1990) Dual ion-channel regulation by cyclic GMP and cyclic GMPdependent protein kinase, Nature, 344, 336-339, https://doi.org/10.1038/344336A0.
  72. Winaver, J., Burnett, J. C., Tyce, G. M., and Dousa, T. P. (1990) ANP inhibits Na+-H+ antiport in proximal tubular brush border membrane: role of dopamine, Kidney Int., 38, 1133-1140, https://doi.org/10.1038/KI.1990.323.
  73. Holtbäck, U., Brismar, H., DiBona, G. F., Fu, M., Greengard, P., and Aperia, A. (1999) Receptor recruitment: a mechanism for interactions between G protein-coupled receptors, Proc. Natl. Acad. Sci. USA, 96, 7271-7275, https://doi.org/10.1073/PNAS.96.13.7271.
  74. Choi, M. R., Rukavina Mikusic, N. L., Kouyoumdzian, N. M., Kravetz, M. C., and Fernández, B. E. (2014) Atrial natriuretic peptide and renal dopaminergic system: a positive friendly relationship? Biomed Res. Int., 2014, 710781, https://doi.org/10.1155/2014/710781.
  75. Brismar, H., Holtbäck, U., and Aperia, A. (2000) Mechanisms by which intrarenal dopamine and ANP interact to regulate sodium metabolism, Clin. Exp. Hypertens., 22, 303-307, https://doi.org/10.1081/CEH-100100079.
  76. Kouyoumdzian, N. M., Mikusic, N. L. R., Kravetz, M. C., Lee, B. M., Carranza, A., Mauro, J. S. D., Pandolfo, M., Gironacci, M. M., Gorzalczany, S., Toblli, J. E., Fernández, B. E., and Choi, M. R. (2016) Atrial natriuretic peptide stimulates dopamine tubular transport by organic cation transporters: a novel mechanism to enhance renal sodium excretion, PLoS One, 11, e0157487, https://doi.org/10.1371/JOURNAL.PONE.0157487.
  77. Li, X. C., Wang, C. H., Hassan, R., Katsurada, A., Sato, R., and Zhuo, J. L. (2024) Deletion of AT1a receptors selectively in the proximal tubules of the kidney alters the hypotensive and natriuretic response to atrial natriuretic peptide via NPRA/cGMP/NO signaling, Am. J. Physiol. Renal Physiol., 327, F946-F956, https://doi.org/10.1152/AJPRENAL.00160.2024.
  78. Nakagawa, H., Oberwinkler, H., Nikolaev, V. O., Gaßner, B., Umbenhauer, S., Wagner, H., Saito, Y., Baba, H. A., Frantz, S., and Kuhn, M. (2014) Atrial natriuretic peptide locally counteracts the deleterious effects of cardiomyocyte mineralocorticoid receptor activation, Circ. Heart Fail, 7, 814-821, https://doi.org/10.1161/CIRCHEARTFAILURE.113.000885.
  79. Moro, C. (2013) Natriuretic peptides and fat metabolism, Curr. Opin. Clin. Nutr. Metab. Care, 16, 645-649, https://doi.org/10.1097/MCO.0B013E32836510ED.
  80. Bordicchia, M., Liu, D., Amri, E. Z., Ailhaud, G., Dessì-Fulgheri, P., Zhang, C., Takahashi, N., Sarzani, R., and Collins, S. (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes, J. Clin. Invest., 122, 1022-1036, https://doi.org/10.1172/JCI59701.
  81. Schulz, S. (2005) C-type natriuretic peptide and guanylyl cyclase B receptor, Peptides (N.Y.), 26, 1024-1034, https://doi.org/10.1016/J.PEPTIDES.2004.08.027.
  82. Goetze, J. P., Bruneau, B. G., Ramos, H. R., Ogawa, T., de Bold, M. K., and de Bold, A. J. (2020) Cardiac natriuretic peptides, Nat. Rev. Cardiol., 17, 698-717, https://doi.org/10.1038/S41569-020-0381-0.
  83. Fenrick, R., Bouchard, N., McNicoll, N., and De Léan, A. (1997) Glycosylation of asparagine 24 of the natriuretic peptide receptor-B is crucial for the formation of a competent ligand binding domain, Mol. Cell. Biochem., 173, 25-32, https://doi.org/10.1023/A:1006855522272.
  84. Potter, L. R. (2011) Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases, Pharmacol. Ther., 130, 71-82, https://doi.org/10.1016/J.PHARMTHERA.2010.12.005.
  85. Nakagawa, Y., and Nishikimi, T. (2022) CNP, the third natriuretic peptide: its biology and significance to the cardiovascular system, Biology (Basel), 11, 986, https://doi.org/10.3390/BIOLOGY11070986.
  86. Nagase, M., Katafuchi, T., Hirose, S., and Fujita, T. (1997) Tissue distribution and localization of natriuretic peptide receptor subtypes in stroke-prone spontaneously hypertensive rats, J. Hypertens., 15, 1235-1243, https://doi.org/10.1097/00004872-199715110-00007.
  87. Hagiwara, H., Sakaguchi, H., Itakura, M., Yoshimoto, T., Furuya, M., Tanaka, S., and Hirose, S. (1994) Autocrine regulation of rat chondrocyte proliferation by natriuretic peptide C and its receptor, natriuretic peptide receptor-B, J. Biol. Chem., 269, 10729-10733, https://doi.org/10.1016/S0021-9258(17)34119-4.
  88. Potter, L. R., and Hunter, T. (1998) Identification and characterization of the major phosphorylation sites of the B-type natriuretic peptide receptor, J. Biol. Chem., 273, 15533-15539, https://doi.org/10.1074/JBC.273.25.15533.
  89. Potter, L. R., and Hunter, T. (2000) Activation of protein kinase C stimulates the dephosphorylation of natriuretic peptide receptor-B at a single serine residue: a possible mechanism of heterologous desensitization, J. Biol. Chem., 275, 31099-31106, https://doi.org/10.1074/JBC.M005506200.
  90. Chrisman, T. D., Perkins, D. T., and Garbers, D. L. (2003) Identification of a potent serum factor that causes desensitization of the receptor for C-Type natriuretic peptide, Cell Commun. Signal, 1, 4, https://doi.org/10.1186/1478-811X-1-4.
  91. Abbey, S. E., and Potter, L. R. (2003) Lysophosphatidic acid inhibits C-type natriuretic peptide activation of guanylyl cyclase-B, Endocrinology, 144, 240-246, https://doi.org/10.1210/EN.2002-220702.
  92. Abbey, S. E., and Potter, L. R. (2002) Vasopressin-dependent inhibition of the C-type natriuretic peptide receptor, NPR-B/GC-B, requires elevated intracellular calcium concentrations, J. Biol. Chem., 277, 42423-42430, https://doi.org/10.1074/JBC.M206686200.
  93. Lui, J. C., Nilsson, O., and Baron, J. (2014) Recent insights into the regulation of the growth plate, J. Mol. Endocrinol., 53, T1-T9, https://doi.org/10.1530/JME-14-0022.
  94. Yasoda, A., and Nakao, K. (2010) Translational research of C-type natriuretic peptide (CNP) into skeletal dysplasias, Endocr. J., 57, 659-666, https://doi.org/10.1507/ENDOCRJ.K10E-164.
  95. Pfeifer, A., Aszódi, A., Seidler, U., Ruth, P., Hofmann, F., and Fässler, R. (1996) Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II, Science, 274, 2082-2086, https://doi.org/10.1126/SCIENCE.274.5295.2082.
  96. Tsuji, T., Kiyosu, C., Akiyama, K., and Kunieda, T. (2012) CNP/NPR2 signaling maintains oocyte meiotic arrest in early antral follicles and is suppressed by EGFR-mediated signaling in preovulatory follicles, Mol. Reprod. Dev., 79, 795-802, https://doi.org/10.1002/MRD.22114.
  97. Wu, K., Mei, C., Chen, Y., Guo, L., Yu, Y., and Huang, D. (2019) C-type natriuretic peptide regulates sperm capacitation by the cGMP/PKG signalling pathway via Ca2+ influx and tyrosine phosphorylation, Reprod. Biomed. Online, 38, 289-299, https://doi.org/10.1016/j.rbmo.2018.11.025.
  98. Zhang, M., Su, Y. Q., Sugiura, K., Xia, G., and Eppig, J. J. (2010) Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes, Science, 330, 366-369, https://doi.org/10.1126/SCIENCE.1193573.
  99. Shuhaibar, L. C., Egbert, J. R., Norris, R. P., Lampe, P. D., Nikolaev, V. O., Thunemann, M., Wen, L., Feil, R., and Jaffe, L. A. (2015) Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles, Proc. Natl. Acad. Sci. USA, 112, 5527-5532, https://doi.org/10.1073/PNAS.1423598112.
  100. Bornslaeger, E. A., Mattei, P., and Schultz, R. M. (1986) Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation, Dev. Biol., 114, 453-462, https://doi.org/10.1016/0012-1606(86)90209-5.
  101. Zhao, H., Yu, Y., Mei, C., Zhang, T., Kang, Y., Li, N., and Huang, D. (2023) Effect of C-type natriuretic peptide (CNP) on spermatozoa maturation in adult rat epididymis, Curr. Issues Mol. Biol., 45, 1681-1692, https://doi.org/10.3390/CIMB45020108.
  102. Wang, Z., Wei, H., Wu, Z., Zhang, X., Sun, Y., Gao, L., Zhang, W., Su, Y. Q., and Zhang, M. (2022) The oocyte cumulus complex regulates mouse sperm migration in the oviduct, Commun. Biol., 5, 1327, https://doi.org/10.1038/S42003-022-04287-8.
  103. Yamahara, K., Itoh, H., Chun, T. H., Ogawa, Y., Yamashita, J., Sawada, N., Fukunaga, Y., Sone, M., YurugiKobayashi, T., Miyashita, K., Tsujimoto, H., Kook, H., Feil, R., Garbers, D. L., Hofmann, F., and Nakao, K. (2003) Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration, Proc. Natl. Acad. Sci. USA, 100, 3404-3409, https://doi.org/10.1073/PNAS.0538059100.
  104. Lumsden, N. G., Khambata, R. S., and Hobbs, A. J. (2010) C-type natriuretic peptide (CNP): cardiovascular roles and potential as a therapeutic target, Curr. Pharm. Des., 16, 4080-4088, https://doi.org/10.2174/138161210794519237.
  105. Hakki, S., Crane, M., Hugues, M., O'Hanley, P., and Waldman, S. A. (1993) Solubilization and characterization of functionally coupled Escherichia coli heat-stable toxin receptors and particulate guanylate cyclase associated with the cytoskeleton compartment of intestinal membranes, Int. J. Biochem., 25, 557-566, https://doi.org/10.1016/0020-711X(93)90664-Z.
  106. Ghanekar, Y., Chandrashaker, A., Tatu, U., and Visweswariah, S. S. (2004) Glycosylation of the receptor guanylate cyclase C: role in ligand binding and catalytic activity, Biochem. J., 379, 653-663, https://doi.org/10.1042/BJ20040001.
  107. Hasegawa, M., Matsumoto-Ishikawa, Y., Hijikata, A., Hidaka, Y., Go, M., and Shimonishi, Y. (2005) Disulfide linkages and a three-dimensional structure model of the extracellular ligand-binding domain of guanylyl cyclase C, Protein J., 24, 315-325, https://doi.org/10.1007/S10930-005-6752-X.
  108. Vaandrager, A. B., Van Der Wiel, E., and De Jonge, H. R. (1993) Heat-stable enterotoxin activation of immunopurified guanylyl cyclase C, J. Biol. Chem., 268, 19598-19603, https://doi.org/10.1016/S0021-9258(19)36558-5.
  109. Vaandrager, A. B., Van Der Wiel, E., Hom, M. L., Luthjens, L. H., and De Jonge, H. R. (1994) Heat-stable enterotoxin receptor/guanylyl cyclase C is an oligomer consisting of functionally distinct subunits, which are non-covalently linked in the intestine, J. Biol. Chem., 269, 16409-16415, https://doi.org/10.1016/S0021-9258(17)34022-X.
  110. Rudner, X. L., Mandal, K. K., De Sauvage, F. J., Kindman, L. A., and Almenoff, J. S. (1995) Regulation of cell signaling by the cytoplasmic domains of the heat-stable enterotoxin receptor: identification of autoinhibitory and activating motifs, Proc. Natl. Acad. Sci. USA, 92, 5169-5173, https://doi.org/10.1073/PNAS.92.11.5169.
  111. Weiglmeier, P. R., Rösch, P., and Berkner, H. (2010) Cure and curse: E. coli heat-stable enterotoxin and its receptor guanylyl cyclase C, Toxins (Basel), 2, 2213-2229, https://doi.org/10.3390/TOXINS2092213.
  112. Basu, N., Arshad, N., and Visweswariah, S. S. (2010) Receptor guanylyl cyclase C (GC-C): regulation and signal transduction, Mol. Cell Biochem., 334, 67-80, https://doi.org/10.1007/s11010-009-0324-x.
  113. Carrithers, S. L., Taylor, B., Cai, W. Y., Johnson, B. R., Ott, C. E., Greenberg, R. N., and Jackson, B. A. (2000) Guanylyl cyclase-C receptor mRNA distribution along the rat nephron, Regul. Pept., 95, 65-74, https://doi.org/10.1016/S0167-0115(00)00139-7.
  114. Qian, X., Moss, N. G., Fellner, R. C., Taylor-Blake, B., and Goy, M. F. (2011) The rat kidney contains high levels of prouroguanylin (the uroguanylin precursor) but does not express GC-C (the enteric uroguanylin receptor), Am. J. Physiol. Renal Physiol., 300, F561-F573, https://doi.org/10.1152/AJPRENAL.00282.2010.
  115. Spreca, A., Simonetti, S., and Grazia Rambotti, M. (2000) Atrial natriuretic peptide and guanylin-activated guanylate cyclase isoforms in human sweat glands, Histochem. J., 32, 725-731, https://doi.org/10.1023/A:1004149010623.
  116. Valentino, M. A., Lin, J. E., Snook, A. E., Li, P., Kim, G. W., Marszalowicz, G., Magee, M. S., Hyslop, T., Schulz, S., and Waldman, S. A. (2011) A uroguanylin-GUCY2C endocrine axis regulates feeding in mice, J. Clin. Invest., 121, 3578-3588, https://doi.org/10.1172/JCI57925.
  117. Dugandzic, A., Ratko, M., and Habek, N. (2020) Anxiety-like behavior in female mice changes by feeding, possible effect of guanylate cyclase C, Eur. J. Neurosci., 52, 2781-2790, https://doi.org/10.1111/EJN.14607.
  118. Habek, N., Dobrivojević Radmilović, M., Kordić, M., Ilić, K., Grgić, S., Farkaš, V., Bagarić, R., Škokić, S., Švarc, A., and Dugandžić, A. (2020) Activation of brown adipose tissue in diet-induced thermogenesis is GC-C dependent, Pflugers Arch., 472, 405-417, https://doi.org/10.1007/S00424-020-02347-8.
  119. Gong, R., Ding, C., Hu, J., Lu, Y., Liu, F., Mann, E., Xu, F., Cohen, M. B., and Luo, M. (2011) Role for the membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior, Science, 333, 1642-1646, https://doi.org/10.1126/SCIENCE.1207675.
  120. Kim, G. W., Lin, J. E., Snook, A. E., Aing, A. S., Merlino, D. J., Li, P., and Waldman, S. A. (2016) Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity, Nutr. Diabetes, 6, e211, https://doi.org/10.1038/NUTD.2016.18.
  121. Habek, N., Ratko, M., and Dugandžić, A. (2021) Uroguanylin increases Ca2+ concentration in astrocytes via guanylate cyclase C-independent signaling pathway, Croat. Med. J., 62, 250-263, https://doi.org/10.3325/CMJ.2021.62.250.
  122. Bhandari, R., Srinivasan, N., Mahaboobi, Ghanekar, Y., Suguna, K., and Visweswariah, S. S. (2001) Functional inactivation of the human guanylyl cyclase C receptor: modeling and mutation of the protein kinase-like domain, Biochemistry, 40, 9196-9206, https://doi.org/10.1021/BI002595G.
  123. Crane, J. K., and Shanks, K. L. (1996) Phosphorylation and activation of the intestinal guanylyl cyclase receptor for Escherichia coli heat-stable toxin by protein kinase C, Mol. Cell Biochem., 165, 111-120, https://doi.org/10.1007/BF00229472.
  124. Fawcus, K., Gorton, V. J., Lucas, M. L., and McEwan, G. T. A. (1997) Stimulation of three distinct guanylate cyclases induces mucosal surface alkalinisation in rat small intestine in vitro, Comp. Biochem. Physiol. A Physiol., 118, 291-295, https://doi.org/10.1016/S0300-9629(96)00307-6.
  125. Waldman, S. A., and Camilleri, M. (2018) Guanylate cyclase-C as a therapeutic target in gastrointestinal disorders, Gut, 67, 1543-1552, https://doi.org/10.1136/gutjnl-2018-316029.
  126. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002) The protein kinase complement of the human genome, Science, 298, 1912-1934, https://doi.org/10.1126/SCIENCE.1075762.
  127. Zimmerman, A. D., Nagy, C. R., and Munger, S. D. (2020) Sensory neurons expressing the atypical olfactory receptor guanylyl cyclase D are required for the acquisition of odor preferences by mice in diverse social contexts, Physiol. Behav., 227, 113150, https://doi.org/10.1016/j.physbeh.2020.113150.
  128. Mamasuew, K., Breer, H., and Fleischer, J. (2008) Grueneberg ganglion neurons respond to cool ambient temperatures, Eur. J. Neurosci., 28, 1775-1785, https://doi.org/10.1111/J.1460-9568.2008.06465.X.
  129. Brechbühl, J., Moine, F., Klaey, M., Nenniger-Tosato, M., Hurni, N., Sporkert, F., Giroud, C., and Broillet, M. C. (2013) Mouse alarm pheromone shares structural similarity with predator scents, Proc. Natl. Acad. Sci. USA, 110, 4762-4767, https://doi.org/10.1073/PNAS.1214249110.
  130. Fleischer, J. (2021) The Grueneberg ganglion: signal transduction and coding in an olfactory and thermosensory organ involved in the detection of alarm pheromones and predator-secreted kairomones, Cell Tissue Res., 383, 535-548, https://doi.org/10.1007/S00441-020-03380-W.
  131. Sun, L., Wang, H., Hu, J., Han, J., Matsunami, H., and Luo, M. (2009) Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate, Proc. Natl. Acad. Sci. USA, 106, 2041-2046, https://doi.org/10.1073/PNAS.0812220106.
  132. Hu, J., Zhong, C., Ding, C., Chi, Q., Walz, A., Mombaerts, P., Matsunami, H., and Luo, M. (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse, Science (1979), 317, 953-957, https://doi.org/10.1126/SCIENCE.1144233.
  133. Juilfs, D. M., Fülle, H. J., Zhao, A. Z., Houslay, M. D., Garbers, D. L., and Beavo, J. A. (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway, Proc. Natl. Acad. Sci. USA, 94, 3388-3395, https://doi.org/10.1073/PNAS.94.7.3388.
  134. Yang, R. B., and Garbers, D. L. (1997) Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers, J. Biol. Chem., 272, 13738-13742, https://doi.org/10.1074/JBC.272.21.13738.
  135. Yang, R. B., Foster, D. C., Garbers, D. L., and Fülle, H. J. (1995) Two membrane forms of guanylyl cyclase found in the eye, Proc. Natl. Acad. Sci. USA, 92, 602-606, https://doi.org/10.1073/PNAS.92.2.602.
  136. Ames, J. B. (2022) Structural basis of retinal membrane guanylate cyclase regulation by GCAP1 and RD3, Front. Mol. Neurosci., 15, 988142, https://doi.org/10.3389/FNMOL.2022.988142.
  137. Goraczniak, R. M., Duda, T., Sitaramayya, A., and Sharma, R. K. (1994) Structural and functional characterization of the rod outer segment membrane guanylate cyclase, Biochem. J., 302, 455-461, https://doi.org/10.1042/BJ3020455.
  138. Shyjan, A. W., de Sauvage, F. J., Gillett, N. A., Goeddel, D. V., and Lowe, D. G. (1992) Molecular cloning of a retina-specific membrane guanylyl cyclase, Neuron, 9, 727-737, https://doi.org/10.1016/0896-6273(92)90035-C.
  139. Takei, Y. (2022) Evolution of the membrane/particulate guanylyl cyclase: from physicochemical sensors to hormone receptors, Gen. Comp. Endocrinol., 315, https://doi.org/10.1016/J.YGCEN.2021.113797.
  140. Palczewski, K., Subbaraya, I., Gorczyca, W. A., Helekar, B. S., Ruiz, C. C., Ohguro, H., Huang, J., Zhao, X., Crabb, J. W., Johnson, R. S., Walsh, K. A., Gray-Keller, M. P., Detwiler, P. B., and Baehr, W. (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein, Neuron, 13, 395-404, https://doi.org/10.1016/0896-6273(94)90355-7.
  141. Takei, Y. (2000) Structural and functional evolution of the natriuretic peptide system in vertebrates, Int. Rev. Cytol., 194, 1-66, https://doi.org/10.1016/S0074-7696(08)62394-3.
  142. Bereta, G., Wang, B., Kiser, P. D., Baehr, W., Jang, G. F., and Palczewski, K. (2010) A functional kinase homology domain is essential for the activity of photoreceptor guanylate cyclase 1, J. Biol. Chem., 285, 1899-1908, https://doi.org/10.1074/JBC.M109.061713.
  143. Yamazaki, A., Yu, H., Yamazaki, M., Honkawa, H., Matsuura, I., Usukura, J., and Yamazaki, R. K. (2003) A critical role for ATP in the stimulation of retinal guanylyl cyclase by guanylyl cyclase-activating proteins, J. Biol. Chem., 278, 33150-33160, https://doi.org/10.1074/JBC.M303678200.
  144. Duda, T., Wen, X. H., Isayama, T., Sharma, R. K., and Makino, C. L. (2015) Bicarbonate modulates photoreceptor guanylate cyclase (ROS-GC) catalytic activity, J. Biol. Chem., 290, 11052-11060, https://doi.org/10.1074/JBC.M115.650408.
  145. Lamb, T. D. (2020) Evolution of the genes mediating phototransduction in rod and cone photoreceptors, Prog. Retin. Eye Res., 76, 100823, https://doi.org/10.1016/j.preteyeres.2019.100823.
  146. Wen, X. H., Dizhoor, A. M., and Makino, C. L. (2014) Membrane guanylyl cyclase complexes shape the photoresponses of retinal rods and cones, Front. Mol. Neurosci., 7, 45, https://doi.org/10.3389/FNMOL.2014.00045.
  147. Bianchi, C., Gutkowska, J., Thibault, G., Garcia, R., Genest, J., and Cantin, M. (1985) Radioautographic localization of 125I-atrial natriuretic factor (ANF) in rat tissues, Histochemistry, 82, 441-452, https://doi.org/10.1007/BF02450479.
  148. Sabbatini, M. E. (2009) Natriuretic peptides as regulatory mediators of secretory activity in the digestive system, Regul. Pept., 154, 5-15, https://doi.org/10.1016/J.REGPEP.2009.02.009.
  149. Hirsch, J. R., Kruhøffer, M., Adermann, K., Heitland, A., Maronde, E., Meyer, M., Forssmann, W. G., Herter, P., Plenz, G., and Schlatter, E. (2001) Cellular localization, membrane distribution, and possible function of guanylyl cyclases A and 1 in collecting ducts of rat, Cardiovasc. Res., 51, 553-561, https://doi.org/10.1016/S00086363(00)00297-2.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».